C. Aebi, R. Bracher, S. Liechti-gallati, H. Tschappeler, A. Rudeberg et al., The age at onset of chronicPseudomonas aeruginosa colonization in cystic fibrosis ???prognostic significance, European Journal of Pediatrics, vol.10, issue.Suppl, p.69, 1995.
DOI : 10.1007/BF02191510

T. Jr, J. A. Antharjanam, S. P. Prasad, E. Pesciotta, E. N. Flowers et al., Topics in Organometallic Chemistry, Eur. J. Inorg. Chem. Eur. J. Inorg. Chem. Eur. J. Inorg. Chem. Angew. Chem. Int. Ed, vol.5015, issue.134, pp.155-203, 1999.

?. Ecole-polytechnique-fédérale-de-lausanne-compain, P. Martin, O. R. Legler, and G. V. , Iminosugars: From Synthesis to Therapeutic Applications (b) Stütz, A. E. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond, AdV. Carbohydr. Chem. Biochem. Angew. Chem., Int. Ed. Acc. Chem. Res, vol.48, issue.33, pp.319-750, 1990.

C. Med, S. Gerber-lemaire, L. Juillerat-jeanneret, T. D. Mini-butters, R. A. Dwek et al., ) For reviews see: (a), ReV. Med. Chem. Chem. ReV. Trends Pharmacol. Sci. Tetrahedron: Asymmetry, vol.8, issue.16, pp.77-4683, 1043.

S. Py, S. Tetrahedron-lett-desvergnes, Y. Vallée, S. Py, . Org et al., Perkin Trans For a recent review on enantiopure cyclic nitrones, see: Revuelta, Tetrahedron: Asymmetry J. Am. Chem. Soc. Jespersen, T.; Bols, M.; Skrydstrup, T.; Sierks, M. R. Biochemistry Tetrahedron Lett. Tetrahedron Lett. J.; Ready, S. J.; Warr, S. R. J. Antibiot. J. Chem. Soc. J, vol.48, issue.53 1, pp.6209-6187, 1991.

S. Cicchi, A. Goti, and A. Brandi, Synthesis 2007, 485. (20) For representative examples, see:(a) Goti, A

M. K. Chemd-)-gurjar, R. G. Borhade, V. G. Puranik, C. V. Ramana, K. P. Kaliappan et al., See also ref 15d. (21) For representative examples, see: (a) Cardona, F.; Faggi, Org. Lett. Tetrahedron Lett. E.; Liguori, F.; Cacciarini, M Tetrahedron Lett, vol.69, issue.841, pp.2217-3021, 2003.

A. E. Christina, V. Desvergnes, O. R. Martin, E. Coutouli-argyropoulou, C. Xatzis et al., (22) See ref 15b and 15c. (23) (a) Peer, A.; Vasella, A, J. Org. Chem. Nucleosides, Nucleotides Nucleic Acids HelV. Chim. Acta J. M, vol.71, issue.82, pp.7337-84, 1044.

H. Ooi, A. Urushibara, T. Esumi, Y. Iwabuchi, S. Hatakeyama et al., 26) D-Fructose as been previously used as a starting material for iminosugar syntheses: (a, Tetrahedron Lett, vol.3, issue.34, pp.953-3613, 1993.

. S. Chem, A. S. Pilcher, and P. Deshong, Azeotropic elimination of water proved necessary for complete conversion of the starting material. (31) The configuration of each isomer was assigned from nOe experiments (see Supporting Information) and their ratio was determined from 1 H NMR spectra. (32) Clark (34) Treatment of 11 with catalytic amounts of various acids, with catalytic amounts of KCN, or excesses of hydroxylamine hydrochloride only led to recovery of the starting material, together with products of decomposition, pp.3466-789, 1978.

U. Downloaded-by, . Joseph, and . Grenoble-on, | doi: 10.1021/jo802255t TBAF on silica gel (15.40 g, 15.40 mmol) The reaction was stirred at room temperature during 14 h. The mixture was filtered, and the solid was washed with THF. The filtrate was concentrated under vacuum. Purification of the obtained residue by chromatography over silica gel (pentane/AcOEt CHCl 3 ), ) afforded pure nitrone 8 (2.32 g, 55%) as a yellow oil and oxime, 2009.

1. Hz, 52 (dd, J ) 3.3, 9.6 Hz, 1H), p.59

1. Hz, 16-7.42 (m, 20H); 13 C NMR (75 MHz, CD 3 OD) ? ppm 59, dd, J ) 2.6, 10.2 Hz Hz, 1H), 4.49-4.69 (m, 5H), 4.75 (d, J ) 12.0 Hz, 1H), 4.84 (d, J ) 10.6 Hz, 1H); N, 2.68. (2R,3R,4R,5R)-2-(Hydroxymethyl)piperidine-1,3 To a stirred solution of hydroxylamine 12 (105 mg, 0.19 mmol) in CH 2 Cl 2, pp.7992-7995

. Meoh, mL) was added, and then mixture was concentrated under vacuum This operation was repeated six times. The crude product was dissolved in H 2 O (4 mL) and stirred with DOWEX 1X8 (OH form ) until pH 6. After filtration, the filtrate was concentrated under vacuum to give 15 (31 mg, 91%) as a pale oil, pp.20-47

). P. Girard, J. Namy, H. B. Kaganb-)-h, J. Kagan, P. Namy et al., 175. 2 For reviews on the use of SmI 2 in organic synthesis, see: (a), HRMS (ESI) calcd for C 6 H 13 N 1 Na 1, pp.6859-99, 1980.

M. Rudkin, L. C. Miller, and D. J. Procter, 11 Using only one equivalent of SmI 2 led to 45% conversion of nitrone 1 to 2, suggesting that two equivalents of SmI 2 are needed to complete the reaction. In addition, benzyl alcohol was produced (from NMR analysis of the crude reaction mixture), Organomet. Chem, vol.34, 2008.

E. See, E. For, N. , J. Rehák, L. Fi?era et al., Typical procedure: see ESI ?. 16 For reproducible results, co-evaporation of the starting nitrone several times with toluene, use of THF dried over molecular sieves, and thorough purge of the reaction media using Schlenk techniques were essential. Addition of proton sponge to the reaction mixtures did not improve the yields in alkylation products. 17 For a general review on the chemistry of nitrones see: (a) P. Merino, Science of Synthesis, Arkivoc Synlett Chem.?Eur. J. Angew. Chem., Int. Ed, vol.13, issue.18, pp.27-511, 2002.

E. Racine, A. Christian-philouze, and A. , Sandrine Py with Et 2 O. The organic phase was washed with brine, dried, filtered and concentrated. Purification of the residue by chromatography on silica gel (pentane/AcOEt: 3:1, 1:1, 0:1) afforded pure, p.86

3. 2r and 4. , -3,4,5-Tris-Benzyloxy-2- Benzyloxymethyl-Piperidin-1-ol Colorless crystals, mp 78?80 °C, pp.9-10
URL : https://hal.archives-ouvertes.fr/in2p3-00654867

C. Nonius, working at room temperature and at the monochromated (graphite) CuKa radiation k = 1.54178 A ? . Data reduction, cell determination and refinement were performed using the CAD-4 software [38]. The cell parameters were determined References 1, Asano N Glycobiology, vol.13, p.93, 2003.

A. Stütz, Iminosugars as glycosidase inhibitors: nojirimycin and beyond. Wiley-VCH, Weinheim 3 iminosugars: from synthesis to therapeutic applications, Compain P, Martin OR, 1999.
DOI : 10.1002/3527601740

L. Somsak, V. Nagy, Z. Hadady, T. Docsa, and P. Gergely, Glucose Analog Inhibitors of Glycogen Phosphorylases as Potential Antidiabetic Agents: Recent Developments, Current Pharmaceutical Design, vol.9, issue.15, pp.1177-1187, 2003.
DOI : 10.2174/1381612033454919

T. Butter, R. Dwek, and F. Platt, Inhibition of Glycosphingolipid Biosynthesis:?? Application to Lysosomal Storage Disorders, Chemical Reviews, vol.100, issue.12, p.4683, 2000.
DOI : 10.1021/cr990292q

J. Fan, A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity, Trends in Pharmacological Sciences, vol.24, issue.7, p.355, 2003.
DOI : 10.1016/S0165-6147(03)00158-5

T. Heightman and A. Vasella, Angew Chem Int Ed 38:750, see also refs, pp.1-3, 1999.

T. Niwa and S. Miyata, ???Nojirimycin??? as a Potent Inhibitor of Glucosidase, Agricultural and Biological Chemistry, vol.34, issue.6, p.966, 1970.
DOI : 10.1080/00021369.1970.10859713

D. Schmidt, W. Frommer, L. Müller, and E. Truscheit, Glucosidase-Inhibitoren aus Bazillen, Naturwissenschaften, vol.18, issue.11, p.584, 1979.
DOI : 10.1007/BF00368825

S. Williams, V. Notenboom, J. Wicki, D. Rose, and S. Withers, A New, Simple, High-Affinity Glycosidase Inhibitor:?? Analysis of Binding through X-ray Crystallography, Mutagenesis, and Kinetic Analysis, Journal of the American Chemical Society, vol.122, issue.17, p.4229, 2000.
DOI : 10.1021/ja0002870

Z. Yu, A. Sawkar, L. Whalen, C. Wong, and J. Kelly, -glucitol-Based Glucocerebrosidase Pharmacological Chaperones for Gaucher Disease Intervention, Journal of Medicinal Chemistry, vol.50, issue.1, pp.94-109, 2007.
DOI : 10.1021/jm060677i

URL : https://hal.archives-ouvertes.fr/hal-01258459

F. Cardona, A. Goti, A. Brandi, M. Scarselli, N. Niccolai et al., Molecular Dynamics Simulations on the Complexes of Glucoamylase II (471) from Aspergillus awamori var. X100 with 1-Deoxynojirimycin and Lentiginosine, Journal of Molecular Modeling, vol.3, issue.7, p.249, 1997.
DOI : 10.1007/s008940050037

F. Ruiz and J. Grigera, Free Energy Perturbation Calculations on Glucosidase-Inhibitor Complexes, Medicinal Chemistry, vol.1, issue.5, p.455, 2005.
DOI : 10.2174/1573406054864151

J. Zhou, J. Zhou, Y. Meng, and M. Chen, Molecular Dynamics Simulation of Iminosugar Inhibitor???Glycosidase Complex:?? Insight into the Binding Mechanism of 1-Deoxynojirimycin and Isofagomine toward ??-Glucosidase, Journal of Chemical Theory and Computation, vol.2, issue.1, p.157, 2006.
DOI : 10.1021/ct050168g

N. Oikonomakos, C. Tiraidis, D. Leonids, S. Zographos, M. Kristiansen et al., Iminosugars as Potential Inhibitors of Glycogenolysis:?? Structural Insights into the Molecular Basis of Glycogen Phosphorylase Inhibition, Journal of Medicinal Chemistry, vol.49, issue.19, p.5687, 2006.
DOI : 10.1021/jm060496g

A. Stefanska, N. Coates, L. Mensah, A. Pope, S. Ready et al., SB-219383, a Novel Tyrosyl tRNA Synthetase Inhibitor from a Micromonospora sp. I. Fermentation, Isolation and Properties., The Journal of Antibiotics, vol.53, issue.4, p.345, 2000.
DOI : 10.7164/antibiotics.53.345

E. Racine and S. Py, Manuscript in preparation 38. Enraf-Nonius C AD-4 Software (1988) Bruker-AXS-Enraf-Nonius

C. Johnson, ORTEPII. Report ORNL-5138, 1976.

P. Compain and O. R. Martin, Iminosugars: From Synthesis to Therapeutic Applications
DOI : 10.1002/9780470517437

A. Stütz, Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond, 1999.
DOI : 10.1002/3527601740

N. Asano, R. J. Nash, R. J. Molyneux, and G. W. Fleet, Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application, Tetrahedron: Asymmetry, vol.11, issue.8, p.1645, 2000.
DOI : 10.1016/S0957-4166(00)00113-0

L. E. Fellows, E. A. Bell, D. G. Lynn, F. Pilkiewcz, I. Miura et al., 15 (a), Bioorg. Med. Chem. J. Chem. Soc., Chem. Commun. Kinast, G.; Schedel, M. Angew. Chem., Int. Ed. N. J. Med. Chem, vol.14, issue.48, pp.347-3055, 1979.

. Antibio, 22 Pour des revues sur la synthèse d'iminosucres pipéridiniques voir : (a) Compain, p.963, 1974.

A. Imberty, A. Varrot, H. Lis, N. Sharon, H. Gabius et al., 18, 567. 63 Figure reproduite depuis la ref. 62 avec la permission de A. Imberty, Curr. Opin. Struct. Biol. Chem. Rev. Drug Deliv. Rev. Org. Biomol. Chem. Org. Biomol. Chem, vol.64, issue.3, pp.637-421, 1998.

N. Garber, U. Guempel, N. Gilboa-garber, R. J. Doyle, . Fems-microbiol et al., de sucres 73 Figure reproduite depuis la réf. 70 avec l'autorisation de A. Imberty, Emilie Racine ? Synthèse et réactivité de cétonitrones cycliques à six chaînons dérivées, pp.76-7490, 1987.

P. Cividino, S. Py, Y. Vallée, A. Brandi, F. Cardona et al., et références citées, Angew. Chem. Int. Ed. Chem. Eur. J. Chem. Ber, vol.15, issue.89, pp.7808-2159, 1956.

E. Marcantoni, M. Petrini, and O. Polimanti, Oxidation of secondary amines to nitrones using urea-hydrogen peroxide complex (UHP) and metal catalysts, Tetrahedron Letters, vol.36, issue.20, pp.3561-92, 1995.
DOI : 10.1016/0040-4039(95)00558-T

G. P. Johnson and B. A. Marples, Photorearrangement of spiro-oxaziridines - applications in the syntheses of hexahydro-5H-pyrrolo-[2]benzazepin-5-ones and a tetrahydro-1H,5H-pyrroloisoquinolin-5-one, Tetrahedron Letters, vol.26, issue.34, p.4115, 1985.
DOI : 10.1016/S0040-4039(00)89307-7

A. Alsbaiee, S. A. Ali, and S. A. Ali, The face selectivity of 1,3-dipolar cycloaddition reactions of 4-butyloxycarbonyl-3,4,5,6-tetrahydropyridine 1-oxide, Références bibliographiques 100 Quelques exemples, p.6635, 2008.
DOI : 10.1016/j.tet.2008.05.036

H. B. Kagan, J. L. Namy, A. Dahlén, G. Hilmersson, K. C. Nicolaou et al., Topics in Organometallic Chemistry, Emilie Racine ? Synthèse et réactivité de cétonitrones cycliques à six chaînons dérivées de sucres 133, pp.155-7140, 1999.

R. Molander, G. A. Jantsch, G. Skalla, N. Skalla, and N. , Sequencing Reactions with Samarium(II) Iodide, Chemical Reviews, vol.96, issue.1, pp.307-391, 1930.
DOI : 10.1021/cr950019y

T. Masson, Y. De-doctorat, M. Xu, G. Lin, . Org et al., 139 Riber, 141 Pour un exemple de couplage croisé non stéréosélectif entre deux espèces de type imines voir, 2003.

C. Hazell, R. G. Skrydstrup, T. Alvarez, E. Chiara, J. L. Org et al., 41, 831. 143 Ebran 144 Vacas, Acc. Chem. Res. Chem. Commun. Chem. Commun. Tetrahedron: Asymmetry J. Org. Chem. Chem. Commun. Tetrahedron: Asymmetry J. Org. Chem. Desvergnes, S.; Desvergnes, V.; Martin, O. R.; Liu, H.-w.; Py, S. Bioorg. Med. Chem. J. Carbohydr. Chem. C, vol.73, issue.6, pp.3307-5445, 1962.

S. E. Références-bibliographiques-159-denmark, M. S. Dappen, N. L. Sear, R. T. Jacobs, R. L. Danheiser et al., Fieser's Reagents for Organic Synthesis, J. Am. Chem. Soc, vol.112, issue.160, 1990.

S. Chiba, K. Narasaka, E. S. Dunach, W. Harb, M. F. Ruiz-lopez et al., 167 Exemples d'élimination de substituants en ? de fonctions carbonylées induites par SmI, Tetrahedron Lett. J. Mol. Struct.: THEOCHEM J. Am. Chem. Soc. J. Org. Chem, vol.764, issue.96 2, pp.4849-51, 1974.

K. Otsubo, J. Inanaga, M. Yamaguchi, K. Kusuda, J. Inanaga et al., Perkin Trans. 1 1999, 1295. 168 Hong, J. Org. Chem. Tetrahedron Lett. Chem. Soc. Tetrahedron Chem. Commun. Synlett Z. X. Izquierdo, I.; Plaza, M. T Tetrahedron, vol.51, issue.80 1 173, pp.2596-4437, 1260.