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A B S T R A C T

Objectives: To identifyHaemophilus species and characterise the antimicrobial susceptibility of isolates
from patients with respiratory tract infections (RTIs) in Cameroon.
Methods: Isolates (n = 95) were from patients with RTIs obtained from two hospitals in Yaoundé,
Cameroon. Isolates were identified by biochemical assay, a polymerase chain reaction (PCR)-based
method, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), and whole genome
sequencing. Antibiotic minimum inhibitory concentrations were determined by E-test.
Results: Haemophilus influenzae (H. influenzae) was the most prevalent species, varying from 76.8 to 84.2%
according to the different methods. The isolates were mainly non-typeable (n = 70, 96%). Three H.
influenzae isolates were capsulated (b, e and f). The isolates were genetically diverse and 40 unique
sequence types were identified, including 11 new ones. Resistance to ampicillin was observed among 52
of 94 (55.3%), and 14 of the 52 (26.9%) produced TEM-1 β-lactamase. PBP3 mutations occurred in 40 of 52
(76.9%) ampicillin-resistant isolates. Eleven isolates were chloramphenicol-resistant, with eight of 10
(80%) producing chloramphenicol acetyltransferase. Four Haemophilus isolates were rifampicin-
resistant, with two mutations in rpoB gene. Five isolates were ciprofloxacin-resistant and harboured
mutations in the quinolone-resistance-determining regions of gyrA and parC genes.
Conclusion: TheH. influenzae isolates were highly diverse and showed high levels of antibiotic resistance.
H. influenzae serotype b is still circulating in the post-vaccination era.
© 2020 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Introduction

The genus Haemophilus is a member of the Pasteurellaceae
family and is usually represented as non-motile, aerobic or
facultative anaerobic Gram-negative coccobacillus (Winslow
et al., 1917). The most commonly known species is Haemophilus
influenzae (H. influenzae), which is classified into six serotypes (a–f)
on the basis of a capsular polysaccharide as well as a non-
encapsulated type (non-typeable). Haemophilus haemolyticus (H.
haemolyticus), Haemophilus parahaemolyticus and Haemophilus
* Corresponding author.
E-mail address: muhamed-kheir.taha@pasteur.fr (M.-K. Taha).
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1201-9712/© 2020 The Authors. Published by Elsevier Ltd on behalf of International So
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
parainfluenzae (H. parainfluenzae) are also species of the Haemo-
philus genus (Winslow et al., 1917). These species are among the
early colonisers of the upper respiratory tract and can often cause
respiratory tract infections (RTIs) in children and the elderly.
Additionally, they are (particularly H. influenzae) major causes of
severe invasive infections such as meningitis and bacteraemia. H.
influenzae serotype b is the most virulent and was estimated to
account for approximately 400,000 global deaths annually in 2007
(WHO, 2006).

Haemophilus infections in Cameroon were reported with a
prevalence of: 20% in the upper respiratory tract among school
children in Buea in 2008 (Ndip et al., 2008); 27.7% in bacterial
meningitis in children in three hospitals located in Yaoundé,
Dschang and Kousseri in 2012 (Gervaix et al., 2012); and 3.7% in
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non-tuberculosis purulent pleural effusion in adults in Yaoundé in
2012 (Pefura Yone et al., 2012). Considering antibiotic resistance,
the isolates were frequently resistant to β-lactams (penicillin,
100%; ampicillin, 60%), sulfonamides (100%) and chloramphenicol
(30%) (Ndip et al., 2008).

Vaccination against H. influenzae serotype b (Hib) was
introduced in Cameroon in 2009 through the Expanded
Program on Immunization and it is free of charge for children
aged 0–11 months. Vaccine coverage varies from 22.8 to 93.3%
according to location (Ateudjieu et al., 2020; Chiabi et al., 2017;
Gervaix et al., 2012). Since the introduction of this vaccine in
many countries, the burden of Haemophilus-related infections
has been increasingly dominated by non-typeable H. influenzae
(NTHi). For instance, no meningitis with Hib was recorded in the
North of Cameroon after the introduction of the vaccine (Massenet
and Tapindjin-Gake, 2010), showing the positive effect of the
vaccine.

Vaccine failure has been observed in other countries (Lee et al.,
2008; Purohit et al., 2014) and Haemophilus species as pathogens in
RTIs after introduction of the Hib conjugated vaccine have not been
well studied in Cameroon because most data have focused on
phenotypic characterisation. Moreover, discriminating between
NTHi and other Haemophilus species is challenging and misidenti-
fication of H. haemolyticus as NTHi has been reported (Pickering
et al., 2014; Zhang et al., 2014) due to the high similarity in
morphology and biochemical characteristics between them.
Usually, NTHi is associated with RTIs that result in antibiotic
prescription, and probabilistic antibiotic therapy can select
resistant isolates, whilst H. haemolyticus is rarely associated with
disease (Anderson et al., 2012). Correctly identifying Haemophilus
species in infection is currently an expanding area of study because
of the impact on diagnosis and treatment, and knowing that all
these Haemophilus species present potential risk of triggering
invasive and severe infections. Their colonisation begins in the
upper airways and can spread throughout the respiratory tract,
potentially leading to invasive infections (van Belkum et al., 2007).

This study aimed to describe the molecular epidemiology of
Haemophilus species isolated from patients with RTIs in Yaoundé,
Cameroon.

Methods

Patients and bacterial isolates

Haemophilus species isolates were recovered from hospitalised
patients with RTIs who attended Jamot Hospital and Essos
Hospital Centre in Yaoundé, Cameroon, from January 2017 to
March 2018. Jamot Hospital is the referral hospital for manage-
ment of respiratory diseases in Yaoundé and its surroundings. The
Essos Hospital Centre is one of the referral hospitals for
paediatrics and the main site for recruitment of children with
severe RTIs in the city of Yaoundé as part of influenza surveillance.
Patients were consecutively enrolled in the site studies. Patients
who presented at least two of the following symptoms were
considered as suffering from RTIs: fever, cough, dyspnoea,
wheezing, chest pain or sore throat. Up to 100% of patients from
Essos Hospital Centre suffered from upper RTIs whereas 89% of
the patients from the Jamot Hospital suffered from lower RTIs.
Age and sex of patients, history of Hib immunisation and prior
antibiotic therapy were documented. The clinical samples from
which Haemophilus isolates were detected were: nasopharyngeal
swabs, pleural fluids, sputa, and bronchoalveolar lavage. The
isolates were therefore mostly from non-invasive infections.
Across the sites, more than half of the participants had taken
antibiotics prior to admission (68.6%) and bacterial growth was
associated with this parameter.
Bacterial growth, DNA preparation

Isolates were cultured onto polyvitex chocolate agar plates
and incubated at 37 �C in 5% CO2 for 18–24 h. DNA extraction for
polymerase chain reaction (PCR) and next-generation sequenc-
ing were performed as previously described (Deghmane et al.,
2019).

Bacterial identification

Haemophilus species were initially identified by colony
morphology, Gram stain and requirement for growth factors (V-,
X- and XV-factors). PCR of the ompP2, bexA, fucK, iga, and hpd genes
was applied as previously described (Deghmane et al., 2019).
Matrix-assisted laser desorption ionization-time of flight (MALDI-
TOF) Biotyper, version 3.0 (Bruker Daltonics, Champs sur Marne,
France) was performed as previously described (Hong et al., 2019).
Genetic identification was performed by ribosomal multilocus
sequence typing (rMLST) on pubmlst.org site. BLAST analysis for
homology of the rpoB gene was performed on https://blast.ncbi.
nlm.nih.gov for the identification of Haemophilus species.

Serotyping

A slide agglutination kit was used (ImmuLex H. influenzae type
a–f antisera, MEDIFF, Aubagne, France). A PCR to detect the
capsule-producing gene bexA and cap genes for determining
capsular serotypes was also performed in all H. influenzae isolates
(Falla et al., 1994).

Susceptibility testing

Disk diffusion method was used according to the European
Committee on Antimicrobial Susceptibility Testing (EUCAST)
standards (EUCAST, http://www.eucast.org/) and minimal inhibi-
tory concentrations (MICs) were determined by E-tests following
the manufacturer’s guidelines (bioMérieux SA, Marcy-l’Étoile,
France). β-lactamase activity was screened for all isolates by the
chromogenic nitrocefin test (nitrocefin disks, bioMérieux SA,
Marcy-l’Étoile, France). The H. influenzae strains ATCC49247 and
ATCC49766 were used as controls.

Whole genome sequencing (WGS) analysis

Illumina technology (NextSeq 500, Illumina) was used. Library
preparation was performed as previously described. The Multi-
locus sequence typing (MLST) profiles for H. influenzae were
extracted from the whole genome sequence through the website
http://pubmlst.org/hinfluenzae/; allele numbers and sequence
types (ST) were assigned. The relationship search between STs
generated in this study and existing STs in the MLST global
database was evaluated by eBURST analysis in Phyloviz 2.0
software (Francisco et al., 2009; Nascimento et al., 2017). Other
tools were also used and available on the PubMLST database
(genome comparator tools).

Whole genome sequence data were also analysed using a gene-
by-gene approach using the annotated reference strain (Rd KW20)
on the Bacterial Isolate Genome Sequence Database (BIGSdb)
platform on PubMLST (Jolley and Maiden, 2010). SplitsTree4
(version 4.14.6) was used to visualise the resulting distance
matrices as neighbour-net networks (Huson and Bryant, 2006).
GrapeTree was also drawn on the basis of comparisons of allelic
profiles for the isolates with complete MLST data. The IDs of H.
influenzae isolates with complete MLST data are given in the
Supplementary Table to allow retrieval of whole genome
sequences in FASTA formats.

https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
http://www.eucast.org/
http://pubmlst.org/h
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Multiple alignments of rpoB, gyrA and ftsI proteins were
performed with Clustal Omega (https://www.ebi.ac.uk/Tools/
msa/clustalo/). For ftsI profiles not determined by Illumina
sequencer, Sanger sequencing was applied. Neighbour-Net Split-
sTree graphs were generated using SplitsTree4 to visualise trees of
Haemophilus species from distance matrices.

Molecular mechanism of antibiotic resistance

From the sequencing data, mutations/alterations in genes
encoding enzymes associated with antibiotic resistance were
extracted from http://pubmlst.org/hinfluenzae/ on the basis of
published data from the literature. The mutations associated with
fluoroquinolone resistance were detected from the quinolone
resistance-determining regions (QRDRs) of gyrA, parC and parE
genes (Puig et al., 2014). Similarly, mutations associated to
rifampicin were extracted from the rpoB gene (Chang et al.,
2011). For chloramphenicol resistance, chloramphenicol acetyl-
transferase (cat) gene production was searched. For β-lactams,
three approaches were considered: production of β-lactamases,
mutations in the ftsI gene encoding penicillin-binding protein 3
(PBP3) or both mechanisms (Dabernat et al., 2002; Deghmane
et al., 2019). ROB-1 or TEM-1 β-lactamases were determined by
DNA sequence comparisons (Livrelli et al., 1991). Mutations in the
ftsI gene encoding PBP3 were determined using http://pubmlst.
org/hinfluenzae/ (Deghmane et al., 2019).

Data analysis

Data were analysed using the Statistical Package for
Social Sciences software (version 22.0, SPSS Inc., Chicago, IL,
USA). For isolate identification, the agreement between
methods was estimated. The Chi-square test was used to
compare categorical variables. Statistically significant differ-
ences were defined as those for which the probability of
occurrence was <5%.

Results

Ninety-five apparent Haemophilus isolates from 440 patients
(21.6%) suffering from RTIs were collected, among whom 59
(62.1%) were females. As shown in Table 1, 74 of the 95 (77.9%)
Haemophilus isolates were from children. Hib immunisation status
could be determined in 73.7% cases (70/95). Antibiotic treatment
prior to bacterial culture was 54.7% (52/95).
Table 1
Characteristics of the study population.

Patient characteristics n = 95 JH 

Gender
Male 36 10 

Female 59 15 

Median age (IQR) 3.2 (1.1–10.6) 37.7
Age group (years)
<5 66 2 

5–15 8 2 

>15 21 21 

Clinical samples
Nasopharyngeal swab 73 3 

Pleural fluid 2 2 

Bronchioalveolar aspirate 5 5 

Sputum 15 15 

Antibiotic treatment 52 18 

Abbreviations: /Not applicable; JHJamot Hospital; EHCEssos Hospital Centre.
Identification

On the basis of phenotypic growth requirement, 80 of the 95
(84.2%) tested isolates in this study were identified as H. influenzae,
while the remaining 15 isolates were identified as H. para-
influenzae. The MALDI-TOF allowed to identification of 74 isolates
as H. influenzae (Table 2). Molecular identification by WGS revealed
73 H. influenzae (76.8%) and 15 Haemophilus haemolyticus (15.8%),
six H. parainfluenzae (6.3%) and one Actinobacillus porcitonsillarum
(A. porcitonsillarum) (1.1%). WGS-based identification served as
reference, and rpoB sequencing showed the best correlation with
WGS data (99%). rMLST identified all H. parainfluenzae and A.
porcitonsillarum as Aggregatibacter segnis. MALDI-TOF identified A.
porcitonsillarum as H. parahaemolyticus. Identification agreement
between rpoB BLAST and MALDI-TOF was 98.9% and that of rMLST
and rpoB BLAST was 90.5%.

Serotyping

Of the 73 H. influenzae isolates, three encapsulated isolates
(4.1%) were identified by agglutination test and PCR in female
patients, with agreement of 100%. These serotypes were types b, e
and f. The remaining isolates did not possess capsulation locus. A
serotype b isolate occurred in a 12-year-old child who was not
immunised against Hib. Serotypes e and f occurred in a 1-year-old
(immunised) and 33-year-old (not immunised) patient, respec-
tively.

Antibiotic resistance

AMC (amoxicillin/clavulanic acid) and CRO (ceftriaxone) were
the most active antibiotics (100%) in all Haemophilus isolates. The
main resistance rates included SXT (trimethoprim/sulfamethoxa-
zole), API (ampicillin), TET (tetracycline), and CHL (chlorampheni-
col), with 91%, 55.3%, 10.6%, and 10.6%, respectively (Figure 1). The
resistance to nalidixic acid and rifampicin was 4.2% for both. Of the
ampicillin-resistant isolates, 14 produced β-lactamase, among
which five (35.7%) isolates demonstrated multiple resistance to
SXT25, TET30, API2, and CHL30. β-lactamase-positive rates were
high in 11 of 14 children (78.6%).

Ampicillin resistance mechanisms

Of the 52 ampicillin-resistant Haemophilus isolates, there were
14 new ftsI alleles identified in this study. Forty ftsI alleles had
mutations in the transpeptidase domain of the ftsI gene related to
EHC Hib vaccine
coverage (%)

26 28 (77.8)
44 44 (74.6)

 (27.4–54.7) 2.4 (0.8–4.1) /

64 65 (98.5)
6 5 (62.5)
0 0

70 /
0 /
0 /
0 /
34 /

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://pubmlst.org/
http://pubmlst.org/
http://pubmlst.org/


Table 2
Identification of Haemophilus isolates following different methods.

H. influenzae (%) H. haemolyticus (%) H. parainfluenzae (%) H. segnis (%) Actinobacillus
porcitonsillarum (%)

H. parahaemolyticus (%)

Growth factors 80 (84.2) 0 15 (15.8) 0 0 0
PCR 73 (76.8) Not applicable Not applicable Not applicable Not applicable Not applicable
MALDI-TOF 74 (77.9) 14 (14.7) 6 (6.3) 0 0 1 (1.1)
rMLST 73 (76.8) 14 (14.7) 0 8 (8.4) 0 0
rpoB BLAST 72 (75.8) 16 (16.8) 6 (6.3) 0 1 (1.1) 0
Whole genome BLAST 73 (76.8) 15 (15.8) 6 (6.3) 0 1 (1.1) 0

Abbreviations: PCR, polymerase chain reaction; MALDI-TOF, matrix-assisted laser desorption ionization-time of flight; rMLST, ribosomal multilocus sequence typing; BLAST,
basic local alignment search tool.

Figure 1. Antibiotic resistance profile of Haemophilus isolates.
N, number of resistant isolates; API2, ampicillin 2 mg; CHL30, chloramphenicol 30 mg; NAL30, nalidixic acid 30 mg; CXM30, cefuroxime 30 mg; SXT25, co-trimoxazole 25 mg;
GEN15, gentamicin 15 mg; TET30, tetracycline 30 mg; RIF30, rifampicin 30 mg; ERY15, erythromycin 15 mg
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decreased susceptibility. Of the 14 Haemophilus isolates producing
β-lactamase, four (28.6%) also exhibited mutations in the ftsI gene
encoding PBP3. The genetic platform bearing TEM-1 was detected
in all β-lactamase-producing isolates. Table 3 summarises the
amino acid changes that were observed. Among the 31 resistant H.
influenzae isolates, 20 isolates showed mutations in ftsI, of which
Table 3
Mutations in part of PBP3 among 40 ampicillin-resistant Haemophilus isolates.

Haemophilus
species

Number of
isolates

fstI blaTEM-
1

fstI
group

Amino acid substitu

Haemophilus
influenzae

2 2 0 III D350N; M377I; A502
3 6, 55,

127
0 II D350N

4 43 0 III D350N; G490E; N52
2 97 0 II A502V; R517H
1 119 0 III D350N; M377I; G490
2 120 0 III D350N; G490E; A502
1 121 0 II G490E; N526K
1 122 0 III I449 V; N526K
1 123 0 II A437S
3 126 3 II A502S

Haemophilus
haemolyticus

8 / 1 / F332L; K344R; I348V
I519L

1 / 0 / F332L; K344R; I348V
A437S; V461I; I519L

4 / 0 / K344R; D350N; T352
1 / 0 / K344R; D350N; T352
1 / 0 / K344R; D350 N; T35
2 / 0 / V342A; K344R; I348

I420V; A444S; V461I
Haemophilus
parainfluenzae

2 / 0 / V342A; K344R; I348
V418R; I420V; A444S

1 / 0 / V342A; K344R; I348
I420V; A444S; V461I

Abbreviations: /, not applicable; A, alanine; D, aspartate; E, glutamate; F, phenylalani
asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; blaT
10 were of group II and 10 belonged to group III (Table 3), according
to Deghmane et al. in 2019. In addition to the common E398D and
I488 V substitutions, five of the six H. parainfluenzae ampicillin-
non-susceptible isolates displayed mutations, as shown in Table 3.
Of the 15 H. haemolyticus, 14 were ampicillin-resistant and all
showed mutations in the ftsI gene.
tions

V; N526K

6K

E; A502V; N526K
V; N526K

; D350N; T352G; K355T; L356 V; M377I; S406G; P408S; V418A; A437S; V461I;

; D350N; T352G; S353A; K355T; L356 V; M377I; P392A; S406G; P408S; V418A;

G; K355T; L356V; M377I
G; K355T; L356 V; A368V; M377I
2G; K355T; L356V; M377I; K486Q; G490E
V; D350N; T352G; K355T; L356V; A368P; M377I; S406G; P408D; D410E; V418R;
; K477Q; I488V; I491M
V; D350N; T352G; K355T; L356V; A368P; M377I; E398D; S406G; P408D; D410E;
; V461I; K477Q; I491M
V; D350N; T352G; K355T; L356V; A368P; M377I; S406G; P408D; D410E; V418R;
; K477Q; I491M

ne; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, methionine; N,
EM-1: β-lactamase TEM-1.



Table 4
Inhibitory diameters, MICs of fluoroquinolones and the amino acid mutations of the quinolone resistance-determining regions (QRDRs) of gyrAand parC in the
Haemophilusisolates.

Isolates Haemophilus species Disk diffusion inhibitory zone diameter (mm) MIC (mg/mL) Mutation(s) in QRDR

NAL CIP CIP gyrA parC

108�13Cr H. parainfluenzae 10 14 4 S84L, D88Y S84F, D88Y
173-AN* H. haemolyticus 31 34 0.19 S84L None
178-AN H. influenzae 6 14 2 S84L, D88N S84I
283-CN* H. influenzae 33 35 0.012 S84L None
326-CN H. influenzae 15 25 1 S84L S84R

Abbreviations: D, aspartate; F, phenylalanine; I, isoleucine; L, leucine; N, asparagine; R, arginine; S, serine; Y, tyrosine.
* Susceptible Haemophilus isolates with amino acid substitutions in gyrA gene.
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Chloramphenicol acetyltransferase production

Of the 10 Haemophilus isolates resistant to chloramphenicol,
there were one H. parainfluenzae, two H. haemolyticus and seven
H. influenzae. The molecular mechanism underlying this
resistance was the production of chloramphenicol acetyltransfer-
ase enzyme in these isolates, except for two H. influenzae isolates;
these two resistant isolates did not display 50S subunit ribosomal
mutations.

Mutations in the QRDRs

All QRDRs of gyrA (DNA gyrase subunit A), parC (DNA
topoisomerase IV subunit A) and parE (DNA topoisomerase IV
subunit B) sequences of susceptible and non-susceptible Haemo-
philus isolates were compared with those of H. influenzae loci
HEAM01394, HAEM01649 and HAEM01650, respectively, through
the MLST website (http://pubmlst.org/hinfluenzae/). Five isolates
showed mutations in the QRDRs of gyrA, of which three were
resistant to ciprofloxacin (on the basis of the diameter of the
inhibition zone) and two susceptible isolates that exhibited only an
S84L mutation, as shown in Table 4. The resistant isolates
presented changes at position 84 in gyrA and mutations in parC.
Among resistant isolates with MIC > 2 mg/mL, mutations involved
two substitutions at the 84 and 88 positions in QRDRs of gyrA. No
mutation was obtained in gyrB or parE.

Mutations in the rpoB gene

None of the isolates that were identified as H. influenzae was
resistance to rifampicin. However, four non-H. influenzae isolates
(4.3% of all tested isolates) were rifampicin-resistant, including one
H. haemolyticus and three H. parainfluenzae isolates. Several
mutations were detected in the rpoB genes encoding the beta
subunit of the RNA polymerase in the three H. parainfluenzae.
Mutation within the cluster I region (507–533) of rpoB gene (D516
N and N518D) were observed in the two H. parainfluenzae isolates
with MIC of 32 mg/mL. The H. haemolyticus isolate showed no
mutation and showed MIC of rifampicin of 1.5 mg/mL (Table 5).
None of the rifampicin-susceptible isolates revealed mutations
within the rifampicin-resistance determining region of the rpoB
gene, which are described to be associated with resistance.
Table 5
Inhibitory diameters, MICs of rifampicin and the amino acid mutations of the rpoB gen

Isolates Haemophilus species RIF30 inhibition z

080�6Cr H. parainfluenzae 17 

117�9Cr H. parainfluenzae 17 

157-Acr H. parainfluenzae 11 

340-AN H. haemolyticus 16 

Abbreviations: RIF, rifampicin; MIC, minimal inhibitory concentration; D, aspartate; F, 
Genetic relationships among the isolates

The genetic relatedness among Haemophilus species was
displayed from the alignment of protein sequences of ftsI, gyrA
and rpoB (Figure 2). The ftsI phylogenetic tree allowed separation of
the three species (H. influenzae, H. haemolyticus and H. para-
influenzae). This was also the case for the rpoB-based phylogenic
tree. The gyrA (Figure 2B) gave the less discriminant profile, while
the phylogenetic tree from ftsI (Figure 2A) gave a better profile,
with the different species well separated.

The MLST-based genetic relatedness of H. influenzae isolates
was then analysed. Of the 73 H. influenzae isolates, 46 had a
complete MLST profile with all the seven housekeeping genes (adk,
atpG, fucK, frdb, mdh, pgi, and recA) that showed 40 distinct STs. A
single isolate represented 34 unique STs, while 12 other isolates
represented six other unique STs (two isolates per ST) (Figure 3).
The diversity among the 46 H. influenzae isolates was also reflected
by the high Simpson's Index of diversity, which was 1 with 95% CI
[1.0, 1.0]. The isolates were highly diverse and several STs
corresponded with new STs that were included in the pubMLST
database. It is noteworthy that the unique serotype b isolate
belonged to ST-222, which is quite different from the ST-6 to which
the majority of invasive serotype b isolates belong (Deghmane
et al., 2019). The GrapeTree analysis also showed a highly diverse
structure of the tree and few isolates were linked by fewer than
three different alleles of the seven MLST genes (Figure 3). The
metadata of these 46 isolates were also very diverse (polysaccha-
ride capsule, age, sex, sample type, study site). The remaining 27
isolates lacked one or more housekeeping genes of the seven loci of
the MLST scheme. Therefore, the whole set of the 73 isolates was
compared using WGS analysis with “Gene Comparator” of the
BIGSdb against the loci of the reference strain Rd KW20. The
neighbour network is presented in Figure 4, which also shows the
highly diverse structure of the bacterial isolates in this study.

The eBURST algorithm generated from the 40 different STs, a
single clonal complex and 46 singletons revealed a high level of
genetic diversity in this population structure of H. influenzae.

Discussion

All Haemophilus species were correctly identified by rpoB
analysis and MALDI-TOF on the basis of WGS-based identification.
e in Haemophilus isolates.

one (mm) RIF, MIC (mg/mL) rpoB mutation

32 F506S, N518D, T724I, L979V
2 V634I, L979V
32 D516N, T724I, L979V
1.5 No mutation

phenylalanine; I, isoleucine; N, asparagine; S, serine; T, threonine; V, valine.

http://pubmlst.org/h


Figure 2. Neighbour-Net SplitsTree graphs generated using SplitsTree4 to visualise trees of Haemophilus species isolated from patients with respiratory infections. They show
the genetic relatedness of Haemophilus species based on three genes: ftsI (A), gyrA (B) and rpoB(C).
Black indicates Haemophilus influenzae; green indicates Haemophilus parainfluenzae; red indicates Haemophilus haemolyticus.
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The rMLST failed to identify H. parainfluenzae isolates because they
are most closely related to Aggregatibacter segnis (Murphy et al.,
2015). NTHi represented 95.9% of H. influenzae isolates (70/73).
This result is similar to other studies (Chang et al., 2011;
Setchanova et al., 2013). One of 73 (1.4%) H. influenzae was type
b isolated in a non-vaccinated participant in the current study, but
was genetically distinct from invasive Hib isolates.

Resistance towards the folate pathway inhibitors was frequent
and encountered in 85% of the tested isolates. This result is similar
to those in Ethiopia, Thailand and Turkey (Kuvat et al., 2015;
Lulitanond et al., 2012; Mulu et al., 2018). As in the current study,
isolates from these studies were mainly form patients with RTIs.
Further studies may need to distinguish between invasive and non-
invasive isolates as antibiotic resistance frequencies may differ
between these isolates (Deghmane et al., 2019). Moreover, carriage
isolates from asymptomatic carriers should be considered.

Resistance to β-lactams was of great importance since they are
first-line drugs for many bacterial infections. A total of 55.3% of
isolates were resistant to β-lactams. It was reported that 14.7% of
isolates were β-lactamase-positive, which was similar to 13.3%
reported in North African countries (Algeria, Morocco and Tunisia)
(Benouda et al., 2009) but lower than the observed frequencies
(>20%) in several sub-Saharan African countries (Senegal, Demo-
cratic Republic of Congo and Central African Republic) (Bercion
et al., 2007; Kacou-Ndouba et al., 2016; Ndiaye et al., 2009). All β-
lactamase producing Haemophilus isolates harboured the TEM-1
gene (Tristram et al., 2007).

Among the 25% of Haemophilus isolates that had a mutation in
their PBP3, the N526 K mutation was the most recurrent in
H. influenzae followed by the D350 N mutation. This result is
similar to many other studies in Spain (Puig et al., 2013) and
Portugal (Barbosa et al., 2011). The mutations associated with
resistance in H. haemolyticus were similar to those published in
many studies using the sequence of the Rd KW20 strain as
reference (Maddi et al., 2017; Marti et al., 2016; Witherden and
Tristram, 2013). The analysis of mutations conferring ampicillin
resistance in H. haemolyticus took H. influenzae as a reference strain
(Marti et al., 2016). Twelve resistant isolates did not exhibit any
mutations. The antibiotic resistance mechanism of these remain-
ing β-lactam antibiotic-resistant isolates could be due to altered
antibiotic permeability and efflux, as demonstrated in Gram-
negative bacteria (Wilke et al., 2005).

Resistance to fluoroquinolones that was previously considered
extremely rare in Haemophilus species (Pérez-Trallero et al., 2010;
Puig et al., 2015) is emerging worldwide, with 4.2% recorded in the
present study. It is associated with mutations in the genes
encoding the DNA gyrase (gyrA) and topoisomerase IV (parC and
parE) in Haemophilus species. The amino acid substitutions are S84
L, D88 N/Y in GyrA and S84 F/I/R, D88 N/Y in ParC, as reported in
previous studies (Abotsi et al., 2017; Puig et al., 2015; Rodriguez-
Martinez et al., 2011). Only Haemophilus isolates with MICs >2 mg/
mL of ciprofloxacin exhibited mutations 84 and 88 in both gyrA and
parC. This result is different from many other studies where
isolates with 2 > MICs (mg/mL)>0.5 presented at least two
mutations (Faccone et al., 2016; Shoji et al., 2014). However, two
isolates had mutations at position 84 of GyrA but showed
susceptible phenotypes. Similarly, in Japan, three susceptible H.
influenzae isolates had a single mutation (two Ser84-Leu mutations



Figure 3. (A) UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree of 46 H. influenzae sequences constructed from the seven MLST loci. The linkage distance
shows the number of nucleotide substitutions. (B) A GrapeTree based on the seven MLST loci from the 46 genome of isolates with complete MLST data. The nodes were drawn
to scale according to the number of isolates (indicated by the pie chart) of each node. The branches between the nodes were drawn to scale and the number of different alleles
between the two connected nodes is indicated on the branch. The grey node corresponded to non-typeable isolates (HiNT). The two typeable isolates were indicated in red
(serotype b) and cyan (serotype f).
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in the gyrA gene and one mutation at Gly82-Arg in parC) (Shoji
et al., 2014). The current findings are different from most studies,
which show that the mutation at position 84 was associated to
fluoroquinolone resistance. In South Africa, it has been found that
the only mutation at position 84 in GyrA was associated with
fluoroquinolone resistance (Elliott et al., 2003). The S84 L mutation
was found in both susceptible and resistant isolates, suggesting
that it is an initial but not a sufficient step in the development of
fluoroquinolone resistance (Seyama et al., 2017; Shoji et al., 2014).

After analysing the sequence of the rifampicin-resistance
determining region of the rpoB gene, two resistant isolates of
four showed two substitutions in the conserved cluster I region
(507–533) of rpoB gene (D516 N and N518D), considered as
markers of rifampicin resistance (Abadi et al., 1996; Cruchaga et al.,
2003; Goldstein, 2014). Other amino acid changes outside clusters
(amino acids 507–533; amino acids 563–572 and amino acid 687)
– including F506S, V634I, T724I, and L979V – were detected in
resistant isolates of H. parainfluenzae but not in susceptible
isolates, suggesting that they could play a role in rifampicin
resistance. The resistance mechanism in H. haemolyticus with MIC
of 1.5 mg/mL without any mutation in the rifampicin-resistance
determining region of the rpoB gene highlighted the fact that
amino acid substitution in the rpoB gene is not the only resistance
mechanism in Haemophilus species (Abadi et al., 1996; Cruchaga
et al., 2003; Goldstein, 2014).
Among the 94 Haemophilus isolates, 10.6 % were resistant to
chloramphenicol, which is lower than the 21.7 % reported in
Cameroon in 2001 (Fonkoua et al., 2001). The difference in
resistance profiles can be linked to the fact that most Haemophilus
isolates were not invasive. Additionally, chloramphenicol is no
longer routinely used due to the side effects. Production of
chloramphenicol acetyltransferase enzyme was recorded in
81.8 % of resistant isolates. Indeed, enzymatic inactivation by
acetylation of the drug via different types of chloramphenicol
acetyltransferases is the first and still most frequently
encountered mechanism of bacterial resistance to chloram-
phenicol (Tristram et al., 2007). However, two resistant
isolates of Haemophilus species (18.2 %) remained with unknown
resistance mechanisms and it was hypothesised that this could be
due to other mechanisms such as efflux systems, inactivation by
phosphotransferases, mutations of the target site, and permeabil-
ity barriers (Schwarz et al., 2004).

High genetic diversity was observed but no association was
found between the ST and clinical and demographic parameters.
Similar results have already been reported in the USA, Spain and
Italy (Giufre et al., 2018; Puig et al., 2013; Schumacher et al., 2012).
In summary, Haemophilus respiratory infections are dominated by
highly diverse NTHi in Cameroon, showing high levels of antibiotic
resistance. Vaccines for NTHi would be of great interest with
regards to its detection rate.



Figure 4. A neighbour-network based on allelic profiles all the 73 isolates compared with the annotated loci of the reference strain Rd KW20 (ref). Individual isolates are
represented by circles and the colour of the circle indicates the serotype of the corresponding isolate. The non-typable isolates (HiNT) are represented by grey circles. The two
typeable isolates were indicated in a red circle (serotype b) and cyan circle (serotype f).
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