M. A. Ingersoll, A. M. Platt, S. Potteaux, and G. J. Randolph, Monocyte trafficking in acute and chronic inflammation, Trends Immunol, vol.32, pp.470-477, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01662528

H. F. Langer and T. Chavakis, Leukocyte-endothelial interactions in inflammation, J Cell Mol Med, vol.13, pp.1211-1220, 2009.

A. D. Luster, R. Alon, and U. H. Von-andrian, Immune cell migration in inflammation: present and future therapeutic targets, Nat Immunol, vol.6, pp.1182-1190, 2005.

I. F. Charo and R. M. Ransohoff, The many roles of chemokines and chemokine receptors in inflammation, N Engl J Med, vol.354, pp.610-621, 2006.

A. Ortega-gomez, M. Perretti, and O. Soehnlein, Resolution of inflammation: an integrated view, EMBO Mol Med, vol.5, pp.661-674, 2013.

R. M. Ransohoff, Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology, Immunity, vol.31, pp.711-721, 2009.

B. Combadière, C. Combadière, and P. Deterre, Les chimiokines: un réseau sophistiqué de guidage cellulaire, Med Sci, vol.23, pp.173-179, 2007.

S. I. Simon, M. R. Sarantos, C. E. Green, and U. Y. Schaff, Leucocyte recruitment under fluid shear: mechanical and molecular regulation within the inf lammator y synapse, Clin E xp Pharmacol Physiol, vol.36, pp.217-224, 2009.

C. L. Speyer and P. A. Ward, Role of endothelial chemokines and their receptors during inflammation, J Invest Surg, vol.24, pp.18-27, 2011.

J. F. Bazan, A new class of membrane-bound chemokine with a CX3C motif, Nature, vol.385, pp.640-644, 1997.

M. Matloubian, A. David, S. Engel, J. E. Ryan, and J. G. Cyster, A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo, Nat Immunol, vol.1, pp.298-304, 2000.

A. Ludwig and C. Weber, Transmembrane chemokines: versatile 'special agents' in vascular inflammation, Thromb Haemost, vol.97, pp.694-703, 2007.

K. J. Garton, Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1), J Biol Chem, vol.276, pp.37993-38001, 2001.

C. Hundhausen, The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion, Blood, vol.102, pp.1186-1195, 2003.

A. Ludwig, Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules, Comb Chem High Throughput Screen, vol.8, pp.161-171, 2005.

T. Imai, Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion, Cell, vol.91, pp.80438-80447, 1997.

P. Ancuta, Fractalkine preferentially mediates arrest and migration of CD16+ monocytes, J Exp Med, vol.197, pp.1701-1707, 2003.

A. Babendreyer, L. Molls, D. Dreymueller, S. Uhlig, and A. Ludwig, Shear Stress Counteracts Endothelial CX3CL1 Induction and Monocytic Cell Adhesion, Mediators Inflamm, vol.1515389, 2017.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

F. Tacke and G. J. Randolph, Migratory fate and differentiation of blood monocyte subsets, Immunobiology, vol.211, pp.609-618, 2006.

O. Postea, Contribution of platelet CX(3)CR1 to platelet-monocyte complex formation and vascular recruitment during hyperlipidemia, Arterioscler Thromb Vasc Biol, vol.32, pp.1186-1193, 2012.

C. Schulz, Chemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for P-selectin expressed on activated platelets, Circulation, vol.116, pp.764-773, 2007.

J. Guo, Chemoattraction, adhesion and activation of natural killer cells are involved in the antitumor immune response induced by fractalkine/CX3CL1, Immunol Lett, vol.89, pp.101-110, 2003.

E. Lavergne, Fractalkine mediates natural killer-dependent antitumor responses in vivo, Cancer Res, vol.63, pp.7468-7474, 2003.

V. Julia, CX3CL1 in allergic diseases: not just a chemotactic molecule, Allergy, vol.67, pp.1106-1110, 2012.

A. L. Collar, The homozygous CX3CR1-M280 mutation impairs human monocyte survival, JCI Insight, vol.3, 2018.

G. E. White, E. Mcneill, K. M. Channon, and D. R. Greaves, Fractalkine promotes human monocyte survival via a reduction in oxidative stress, Arterioscler Thromb Vasc Biol, vol.34, pp.2554-2562, 2014.

R. Cipriani, CX3CL1 Is Neuroprotective in Permanent Focal Cerebral Ischemia in Rodents, J. Neurosci, vol.31, pp.16327-16335, 2011.

K. W. Kim, In vivo structure/function and expression analysis of the CX3C chemokine fractalkine, Blood, vol.118, pp.156-167, 2011.

O. Meucci, A. Fatatis, A. A. Simen, and R. J. Miller, Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival, Proc Natl Acad Sci U S A, vol.97, pp.8075-8080, 2000.

T. Mizuno, J. Kawanokuchi, K. Numata, and A. Suzumura, Production and neuroprotective functions of fractalkine in the central nervous system, Brain Res, vol.979, pp.2867-2868, 2003.

C. Auffray, Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior, Science, vol.317, pp.666-670, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00337698

P. Hamon, CX3CR1-dependent endothelial margination modulates Ly6C(high) monocyte systemic deployment upon inflammation in mice, Blood, vol.129, pp.1296-1307, 2017.

S. Jacquelin, CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice, Blood, vol.122, pp.674-683, 2013.

P. Hermand, Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1, Sci Rep, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371569

A. Ludwig and R. Mentlein, Glial cross-talk by transmembrane chemokines CX3CL1 and CXCL16, Journal of Neuroimmunology, vol.198, pp.92-97, 2008.

K. Hattermann, Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling. Elife 5, e10820, 2016.

M. A. Ostuni, CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain, Biol Open, vol.3, pp.1173-1182, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01095507

P. Hermand, Functional adhesiveness of the CX3CL1 chemokine requires its aggregation. Role of the transmembrane domain, J Biol Chem, vol.283, pp.30225-30234, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00392456

I. Motta, Formation of Giant Unilamellar Proteo-Liposomes by Osmotic Shock, Langmuir, vol.31, pp.7091-7099, 2015.

D. M. Soumpasis, Theoretical analysis of fluorescence photobleaching recovery experiments, Biophys J, vol.41, issue.83, pp.84410-84415, 1983.

K. Braeckmans, L. Peeters, N. N. Sanders, S. C. De-smedt, and J. Demeester, Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope, Biophys J, vol.85, issue.03, pp.74649-74658, 2003.

V. Adrien, Characterization of a Biomimetic Mesophase Composed of Nonionic Surfactants and an Aqueous Solvent, Langmuir, vol.32, pp.10268-10275, 2016.

G. Rayan, J. E. Guet, N. Taulier, F. Pincet, and W. Urbach, Recent applications of fluorescence recovery after photobleaching (FRAP) to membrane bio-macromolecules, Sensors (Basel), vol.10, pp.5927-5948, 2010.

M. Reffay, Tracking membrane protein association in model membranes, Plos One, vol.4, 2009.

Z. A. Jenei, K. Borthwick, V. A. Zammit, and A. M. Dixon, Self-association of transmembrane domain 2 (TM2), but not TM1, in carnitine palmitoyltransferase 1A: role of GXXXG(A) motifs, J Biol Chem, vol.284, pp.6988-6997, 2009.

N. Jamin and J. J. Lacapere, Biophysical analysis of membrane proteins. Investigating structure and function, pp.243-258, 2007.

N. Sreerama and R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Anal Biochem, vol.287, pp.252-260, 2000.

W. Lee, M. Tonelli, and J. L. Markley, NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy, Bioinformatics, vol.31, pp.1325-1327, 2015.

D. S. Wishart, C. G. Bigam, A. Holm, R. S. Hodges, B. D. Sykes et al., 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects, J Biomol NMR, vol.5, pp.67-81, 1995.

J. A. Maier, ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, J Chem Theory Comput, vol.11, pp.3696-3713, 2015.

C. Byrne, M. Belnou, E. Baulieu, O. Lequin, and Y. Jacquot, Electronic circular dichroism and nuclear magnetic resonance studies of peptides derived from the FKBP52-interacting ?-turn of the hER? ligand-binding domain, Peptide Science, vol.111, 2019.

S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De-vries, The MARTINI force field: coarse grained model for biomolecular simulations, J Phys Chem B, vol.111, pp.7812-7824, 2007.

L. Monticelli, The MARTINI Coarse-Grained Force Field: Extension to Proteins, J Chem Theory Comput, vol.4, pp.819-834, 2008.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J Chem Phys, vol.126, p.14101, 2007.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, vol.52, pp.7182-7190, 1981.

S. Jo, T. Kim, V. G. Iyer, and W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM, J Comput Chem, vol.29, pp.1859-1865, 2008.

Y. Qi, CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field, J Chem Theory Comput, vol.11, pp.4486-4494, 2015.

M. J. Abraham, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, 2015.

S. Bondza, Real-time Characterization of Antibody Binding to Receptors on Living Immune Cells, Front Immunol, vol.8, 2017.

V. Hillerdal, V. F. Boura, H. Bjorkelund, K. Andersson, and M. Essand, Avidity characterization of genetically engineered T-cells with novel and established approaches, BMC Immunol, vol.17, 2016.

B. Xu, Detecting ligand interactions with G protein-coupled receptors in real-time on living cells, Biochem Biophys Res Commun, vol.441, pp.820-824, 2013.

M. Agez, Biochemical and biophysical characterization of purified native CD20 alone and in complex with rituximab and obinutuzumab, Sci Rep, vol.9, 2019.

E. Desuzinges-mandon, Expression and purification of native and functional influenza A virus matrix 2 proton selective ion channel, Protein Expr Purif, vol.131, pp.42-50, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01675229

S. Igonet, Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor, Sci Rep, vol.8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01859143

A. Rosati, BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages, Nat Commun, vol.6, 2015.

M. S. Dietz, Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells, BMC Biophys, vol.6, 2013.

P. Hastie, AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting, Proc Natl Acad Sci U S A, vol.110, pp.5163-5168, 2013.

K. E. Hines, Inferring subunit stoichiometry from single molecule photobleaching, J Gen Physiol, vol.141, pp.737-746, 2013.

Y. Teramura, Single-molecule analysis of epidermal growth factor binding on the surface of living cells, EMBO J, vol.25, pp.4215-4222, 2006.

M. H. Ulbrich and E. Y. Isacoff, Subunit counting in membrane-bound proteins, Nat Methods, vol.4, pp.319-321, 2007.

W. Zhang, Vaccination to induce antibodies blocking the CX3C-CX3CR1 interaction of respiratory syncytial virus G protein reduces pulmonary inflammation and virus replication in mice, J Virol, vol.84, pp.1148-1157, 2010.

F. Pincet, FRAP to Characterize Molecular Diffusion and Interaction in Various Membrane Environments, PLoS One, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360185

J. Davoust, P. F. Devaux, and L. Leger, Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological macromolecules, EMBO J, vol.1, pp.1233-1238, 1982.

Y. Gambin, Lateral mobility of proteins in liquid membranes revisited, Proc Natl Acad Sci U S A, vol.103, pp.2098-2102, 2006.

D. L. Bodian, E. Y. Jones, K. Harlos, D. I. Stuart, and S. J. Davis, Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5å resolution, Structure, vol.2, pp.755-766, 1994.

E. Y. Jones, S. J. Davis, A. F. Williams, K. Harlos, and D. I. Stuart, Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2, Nature, vol.360, pp.232-239, 1992.

M. A. Lemmon, Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices, J Biol Chem, vol.267, pp.7683-7689, 1992.

I. T. Arkin, Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel, EMBO J, vol.13, pp.4757-4764, 1994.

J. Colyer, Control of the calcium pump of cardiac sarcoplasmic reticulum. A specific role for the pentameric structure of phospholamban, Cardiovasc Res, vol.27, pp.1766-1771, 1993.

L. R. Jones, H. K. Simmerman, W. W. Wilson, F. R. Gurd, and A. D. Wegener, Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum, J Biol Chem, vol.260, pp.7721-7730, 1985.

I. Callebaut, Hydrophobic cluster analysis and modeling of the human Rh protein three-dimensional structures, Transfus Clin Biol, vol.13, pp.70-84, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00131221

B. F. Scullion, Y. Hou, L. Puddington, J. K. Rose, and K. Jacobson, Effects of mutations in three domains of the vesicular stomatitis viral glycoprotein on its lateral diffusion in the plasma membrane, J Cell Biol, vol.105, pp.69-75, 1987.

M. Wier and M. Edidin, Constraint of the translational diffusion of a membrane glycoprotein by its external domains, Science, vol.242, pp.412-414, 1988.

V. Hillerdal, V. F. Boura, H. Björkelund, K. Andersson, and M. Essand, Avidity characterization of genetically engineered T-cells with novel and established approaches, BMC Immunology, vol.17, 2016.

M. Javanainen, H. Martinez-seara, and I. Vattulainen, Excessive aggregation of membrane proteins in the Martini model, Plos One, vol.12, 2017.

K. Darbandi-tehrani, Subtle conformational changes between CX3CR1 genetic variants as revealed by resonance energy transfer assays, FASEB J, vol.24, pp.4585-4598, 2010.

A. K. Doura and K. G. Fleming, Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer, J Mol Biol, vol.343, pp.1487-1497, 2004.

A. K. Doura, F. J. Kobus, L. Dubrovsky, E. Hibbard, and K. G. Fleming, Sequence context modulates the stability of a GxxxGmediated transmembrane helix-helix dimer, J Mol Biol, vol.341, pp.991-998, 2004.

K. R. Mackenzie, J. H. Prestegard, and D. M. Engelman, A transmembrane helix dimer: structure and implications, Science, vol.276, pp.131-133, 1997.

K. R. Mackenzie and K. G. Fleming, Association energetics of membrane spanning alpha-helices, Curr Opin Struct Biol, vol.18, pp.412-419, 2008.

R. O. Hynes, Integrins: bidirectional, allosteric signaling machines, Cell, vol.110, issue.02, pp.971-977, 2002.

J. Miller, Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1, J Exp Med, vol.182, pp.1231-1241, 1995.

P. Strale, The formation of ordered nanoclusters controls cadherin anchoring to actin and cell-cell contact fluidity, The Journal of Cell Biology, vol.210, pp.333-346, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01196599

J. C. Herve, N. Bourmeyster, and D. Sarrouilhe, Diversity in protein-protein interactions of connexins: emerging roles, Biochim Biophys Acta, vol.1662, pp.22-41, 2004.

S. Hong, R. B. Troyanovsky, and S. M. Troyanovsky, Spontaneous assembly and active disassembly balance adherens junction homeostasis, Proc Natl Acad Sci U S A, vol.107, pp.3528-3533, 2010.

L. Shapiro and W. I. Weis, Structure and biochemistry of cadherins and catenins, Cold Spring Harb Perspect Biol, vol.1, 2009.

C. J. Thompson, V. H. Vu, D. E. Leckband, and D. K. Schwartz, Cadherin Extracellular Domain Clustering in the Absence of Trans-Interactions, J Phys Chem Lett, vol.10, pp.4528-4534, 2019.

H. Yin, Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb, J Biol Chem, vol.281, pp.36732-36741, 2006.

, performed peptide cross-linking experiments and analysis. SIH and, Scientific RepoRtS |, vol.10, p.9069, 2020.

M. A. Ostuni-1*, P. Hermand-1, *. , E. Saindoy-1-§-,-noëlline, G. et al., Elodie DESUZINGES-MANDON, vol.3, issue.2

S. Université, C. Inserm, and . Centre-d, Immunologie et des Maladies Infectieuses (CIMI-Paris), U1135, F-75013

, CNRS, Laboratoire des Biomolécules (LBM), F-75005

, UFR Sciences du Vivant, F-75013

C. I2bc and . Saclay, * Present address: Biologie Intégrée du Globule Rouge, UMR_S1134 ; Institut National de la Transfusion Sanguine ; 6, rue Alexandre Cabanel, vol.75015