Theoretical spectroscopic parameters for the low-lying states of isotopic variants of HCO+ and HOC+

Mirjana Mladenović

To cite this version:
Mirjana Mladenović. Theoretical spectroscopic parameters for the low-lying states of isotopic variants of HCO+ and HOC+. The 25th Colloquium on High-Resolution Molecular Spectroscopy HRMS 2017, Aug 2017, Helsinki, Finland. <hal-01599206>

HAL Id: hal-01599206
https://hal-auf.archives-ouvertes.fr/hal-01599206
Submitted on 1 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The theoretical spectroscopic parameters are derived for all isotopologues of HCO$^+$ and HOC$^+$ involving H, D, 16O, 17O, 18O, 12C, and 13C by means of a two-step procedure. Full-dimensional rovibrotational calculations are first carried out to obtain numerically exact rovibrational energies for $J=0$-15 in both parities. Effective spectroscopic constants for the vibrational ground state, ν_1, ν_2, and ν_3 are determined by fitting the calculated rovibrational energies to appropriate spectroscopic Hamiltonians. Combining our vibration-rotation corrections with the available experimental ground-state rotational constants, we also derive the new estimate for the equilibrium structure of HCO$^+$, $r_e(CH)=1.091981(7)$ Å, and for the equilibrium structure of HOC$^+$, $r_e(HO)=0.990482(7)$ Å. Regarding the spectroscopic parameters, our estimates are in excellent agreement with available experimental results for both HCO$^+$ and HOC$^+$: the agreement for the rotational constants B is within 3 MHz, for the quartic centrifugal distortion constants D within 1 kHz, and for the effective ℓ-doubling constants q within 2 MHz. We thus expect that our results can provide useful assistance in analyzing expected observations of the rare forms of HCO$^+$ and HOC$^+$ that are not yet experimentally known.

Mirjana Mladenović
Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne la Vallée, France

Theoretical spectroscopic parameters for the low-lying states of isotopic variants of HCO$^+$ and HOC$^+$

Minimum energy path V_{MEP} and effective bending potential $\Delta V_{\nu_1, \nu_3}$ for the (0,0), (1,0) and (2,0) stretching states along the Jacobi angle Θ. The curves are shifted to coincide at $\Theta=0^\circ$ for HCO$^+$ and at $\Theta=180^\circ$ for HOC$^+$.