

Theoretical spectroscopic parameters for the low-lying states of isotopic variants of HCO+ and HOC+

Mirjana Mladenović

▶ To cite this version:

Mirjana Mladenović. Theoretical spectroscopic parameters for the low-lying states of isotopic variants of HCO+ and HOC+. The 25th Colloquium on High-Resolution Molecular Spectroscopy HRMS 2017, Aug 2017, Helsinki, Finland. hal-01599206

HAL Id: hal-01599206 https://auf.hal.science/hal-01599206

Submitted on 1 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Theoretical spectroscopic parameters for the low-lying states of isotopic variants of HCO+ and HOC+

Mirjana Mladenović

Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne la Vallée, France

The theoretical spectroscopic parameters are derived for all isotopologues of HCO+ and HOC+ involving H, D, 16 O, 17 O, 18 O, 12 C, and 13 C by means of a two-step procedure. Full-dimensional rovibrational calculations are first carried out to obtain numerically exact rovibrational energies for J=0-15 in both parities. Effective spectroscopic constants for the vibrational ground state, v_1 , v_2 , and v_3 are determined by fitting the calculated rovibrational energies to appropriate spectroscopic Hamiltonians. Combining our vibration-rotation corrections with the available experimental ground-state rotational constants, we also derive the new estimate for the equilibrium structure of HCO+, $r_e(CH)$ =1.091981(7) Å and $r_e(CO)$ =1.105615(2) Å, and for the equilibrium structure of HOC+, $r_e(CH)$ =1.091981(7) Å and $r_e(CO)$ =1.105615(2) Å, and for the equilibrium structure of HOC+, and HOC+; the agreement for the rotational constants $v_e(CO)$ =1.154468(2) A. Regarding the spectroscopic parameters, our estimates are in exelent agreement with available experimental results for both HCO+ and HOC+; the agreement for the rotational constants $v_e(CO)$ =1.154468(2) A. Regarding the spectroscopic parameters, our estimates are in exelent agreement with available experimental results for both HCO+ and HOC+; the agreement for the rotational constants $v_e(CO)$ =1.154468(2) A. Regarding the spectroscopic parameters our estimates are in exelent agreement with available experimental results for both HCO+ and HOC+; the agreement for the rotational constants $v_e(CO)$ =1.154468(2) A. Regarding the spectroscopic parameters our estimates are in exelent agreement with available experimental results for both HCO+ and HOC+; the agreement for the rotational constants $v_e(CO)$ =1.154468(2) A. Regarding the spectroscopic parameters our estimates are in exelent agreement with available experimental results for both HCO+ and HOC+; the agreement of the rotational results for both HCO+ and HCO+ are results for both HCO+

The rovibrational energies computed for a vibrational Σ state v are fitted to the standard polynomial expansion in J(J+1), $E_v(J) = T_v + B_v J(J+1) - D_v J^2(J+1)^2 + H_v J^3(J+1)^3 +$

For a Π state, we use the expansion

$$\begin{split} E_{\nu}(J) &= T_{\nu} + B_{\nu} \left[\ J(J+1) - \ell^2 \right] \ - D_{\nu} \left[\ J(J+1) - \ell^2 \ \right]^2 + H_{\nu} \left[\ J(J+1) - \ell^2 \ \right]^3 + \cdots \\ &\qquad \qquad \pm \ \frac{1}{2} \left[\ q_{\nu} \ J(J+1) + q_{\nu}^{JJ} \ J^2(J+1)^2 + q_{\nu}^{JJ} \ J^3(J+1)^3 + \cdots \right] \end{split}$$

In the traditional spectoscopic approach, the rovibrational correction $\Delta B_{v1,v2,v3}$ to the equilibrium rotational constant B_e is given by $\Delta B_{v1,v2,v3} = B_e$ - $B_{v1,v2,v3} = \sum_{i=1}^{3} \alpha_i \left(v_i + \frac{1}{2} d_i \right)$.

This gives the correction ΔB_0 for the ground vibrational state as

 $\Delta B_0 = B_e - B_0 = \frac{1}{2} (\alpha_1 + 2\alpha_2 + \alpha_3)$, so that $B_i = B_e - \Delta B_0 - \alpha_i$ for i=1,2,3.

Replacing B_e with another value B_e^{est} , we obtain new estimates for the ground state rotational constant, $B_0^{est} = B_e^{est} - \Delta B_0$, and for the rotational constant in the excited *i*-th vibrational state, $B_i^{est} = B_e^{est} - \Delta B_0 - \alpha_i$.

Minimum energy path V_{MEP} and effective bending potential $^{adi}Vv_{1,}v_{3}$ for the (0,0), (1,0) and (2,0) stretching states along the Jacobi angle θ . The curves are shifted to coincide at θ =0 0 for HCO+ and at θ =180 0 for HOC+.

HCO+	$r_e({ m CH})$ / Å	$r_e(CO) / Å$
This work	1.091 981(7)	1.105 615(2)
Dore et al. 15	1.092 04	1.105 58
Puzzarini et al. ⁵	1.091 97	1.105 46
Botschwina et al. 16	1.0919	1.1058
нос+	$r_e({ m HO})$ / Å	$r_e({ m CO})$ / Å
This work	0.990 482(7)	1.154 468(2)
This work, Fit 2	0.990 478	1.154469
Botschwina et al. 16	0.9885	1.1546
Martin et al. 17	0.988 17	1.15471

^aValues in parentheses show one standard error to the last signifcant digits of the distances.

TABLE VI: Selected results for HCO⁺ and HOC⁺ from the rowbrational (J=0,1) DVR-DGB calculations employing the atomic mases (Test 0), the proton mass in combination with the atomic masses for carbon and oxygen (Test 1), and the nuclear masses (Test 2).

	HCO.			
Property	Test 0	Test 1	Test 2	
$\tilde{\nu}_{\rm l}$ / cm ⁻¹	3085.58	3086.20	3086.29	
$\tilde{\nu}_2$ / cm $^{-1}$	830.72	830.88	830.91	
$\tilde{\nu}_3 / \text{cm}^{-1}$	2179.09	2179.20	2179.44	
\tilde{q}_2 / MHz	209.85	209.86	209.94	
\widetilde{B}_1 / MHz	44023.71	44029.62	44038.64	
\widetilde{B}_3 / MHz	44083.53	44089.39	44098.46	
		HOC+		

	noc			
Property	Test 0	Test 1	Test 2	
$\tilde{\nu}_1 / \mathrm{cm}^{-1}$	3276.54	3277.30	3277.34	
$\widetilde{\nu}_2$ / cm ⁻¹	245.07	245.14	245.15	
$\tilde{\nu}_3$ / cm $^{-1}$	1901.32	1901.34	1901.59	
\tilde{q}_2 / MHz	517.00	516.96	517.18	
\widetilde{B}_1 / MHz	44226.43	44230.69	44240.61	
Bo / MHz	44152 40	44156 58	44166.53	