M. Lothaire, Combinatorics on Words, 1983.
DOI : 10.1017/CBO9780511566097

URL : https://hal.archives-ouvertes.fr/hal-00620607

Z. Galil and J. I. Seiferas, Time-space-optimal string matching, Journal of Computer and System Sciences, vol.26, issue.3, pp.280-294, 1983.
DOI : 10.1016/0022-0000(83)90002-8

URL : http://doi.org/10.1016/0022-0000(83)90002-8

M. Crochemore and W. Rytter, Squares, cubes, and time-space efficient string searching, Algorithmica, vol.67, issue.3, pp.405-425, 1995.
DOI : 10.1145/116825.116845

URL : https://hal.archives-ouvertes.fr/hal-00619583

D. Gusfield, Algorithms on Strings, Trees, and Sequences -Computer Science and Computational Biology, 1997.

J. A. Storer, Data Compression: Methods and Theory, 1988.

M. Crochemore, An optimal algorithm for computing the repetitions in a word, Information Processing Letters, vol.12, issue.5, pp.244-250, 1981.
DOI : 10.1016/0020-0190(81)90024-7

URL : https://hal.archives-ouvertes.fr/hal-00619551

M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter et al., Extracting Powers and Periods in a String from Its Runs Structure, String Processing and Information Retrieval -17th International Symposium Proceedings. Volume 6393 of Lecture Notes in Computer Science, pp.258-269, 2010.
DOI : 10.1007/978-3-642-16321-0_27

URL : https://hal.archives-ouvertes.fr/hal-00742047

R. Kolpakov and G. Kucherov, On maximal repetitions in words, J. Discrete Algorithms, vol.1, issue.1, pp.159-186, 2000.
DOI : 10.1007/3-540-48321-7_31

URL : https://hal.archives-ouvertes.fr/inria-00098852

M. Crochemore, L. Ilie, and L. Tinta, Towards a Solution to the ???Runs??? Conjecture, Combinatorial Pattern Matching, 19th Annual Symposium Proceedings. Volume 5029 of Lecture Notes in Computer Science, pp.290-302, 2008.
DOI : 10.1007/978-3-540-69068-9_27

URL : https://hal.archives-ouvertes.fr/hal-00620277

M. Crochemore, M. Kubica, J. Radoszewski, W. Rytter, and T. Walen, On the maximal sum of exponents of runs in a string, Journal of Discrete Algorithms, vol.14, pp.29-36, 2012.
DOI : 10.1016/j.jda.2011.12.016

URL : https://hal.archives-ouvertes.fr/hal-00742081

H. Bannai, I. , T. Inenaga, S. Nakashima, Y. Takeda et al., A new characterization of maximal repetitions by Lyndon trees
DOI : 10.1137/1.9781611973730.38

J. Fischer, S. Holub, I. , T. Lewenstein, and M. , Beyond the Runs Theorem, p.4644, 2015.
DOI : 10.1007/978-3-319-23826-5_27

M. Main and R. Lorentz, An O(n log n) algorithm for finding all repetitions in a string, Journal of Algorithms, vol.5, issue.3, pp.422-432, 1984.
DOI : 10.1016/0196-6774(84)90021-X

D. Breslauer, Efficient string algorithmics, 1992.

D. Kosolobov, Lempel-Ziv factorization may be harder than computing all runs, 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, pp.582-593, 2015.

R. Kolpakov, M. Podolskiy, M. Posypkin, and N. Khrapov, Searching of Gapped Repeats and Subrepetitions in a Word, p.4055, 2013.
DOI : 10.1007/978-3-319-07566-2_22

G. S. Brodal, R. B. Lyngs, C. N. Pedersen, and J. Stoye, Finding maximal pairs with bounded gap, J. Discrete Algorithms, vol.1, issue.1, pp.77-104, 2000.
DOI : 10.7146/brics.v6i12.20069

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. M. Kolpakov and G. Kucherov, Finding repeats with fixed gap, Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000, pp.162-168, 2000.
DOI : 10.1109/SPIRE.2000.878192

URL : https://hal.archives-ouvertes.fr/inria-00107855

P. Gawrychowski and F. Manea, Longest $$\alpha $$ ?? -Gapped Repeat and Palindrome, Fundamentals of Computation Theory -20th International Symposium, FCT 2015, pp.27-40, 2015.
DOI : 10.1007/978-3-319-22177-9_3

M. Dumitran and F. Manea, Longest Gapped Repeats and Palindromes, Mathematical Foundations of Computer Science 2015 -40th International Symposium, MFCS 2015 Proceedings, Part I, pp.205-217, 2015.
DOI : 10.1007/978-3-662-48057-1_16

URL : http://arxiv.org/abs/1511.07180

Y. Tanimura, Y. Fujishige, I. , T. Inenaga, S. Bannai et al., A Faster Algorithm for Computing Maximal $$\alpha $$ -gapped Repeats in a String, String Processing and Information Retrieval - 22nd International Symposium, SPIRE 2015 Proceedings. Volume 9309 of Lecture Notes in Computer Science, pp.124-136, 2015.
DOI : 10.1007/978-3-319-23826-5_13

G. Badkobeh, M. Crochemore, and C. Toopsuwan, Computing the Maximal-Exponent Repeats of an Overlap-Free String in Linear Time, String Processing and Information Retrieval -19th International Symposium, pp.61-72, 2012.
DOI : 10.1007/978-3-642-34109-0_8

URL : https://hal.archives-ouvertes.fr/hal-00742088

R. Kolpakov, G. Kucherov, and P. Ochem, On maximal repetitions of arbitrary exponent, Information Processing Letters, vol.110, issue.7, pp.252-256, 2010.
DOI : 10.1016/j.ipl.2010.01.005

R. Kolpakov, On primary and secondary repetitions in words, Theoretical Computer Science, vol.418, pp.71-81, 2012.
DOI : 10.1016/j.tcs.2011.10.024

URL : http://doi.org/10.1016/j.tcs.2011.10.024

M. Crochemore, R. Kolpakov, and G. Kucherov, Optimal searching of gapped repeats in a word, p.1221, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01386705

P. Gawrychowski, I. , T. Inenaga, S. Köppl, D. Manea et al., Efficiently finding all maximal $?$-gapped repeats, p.9237, 2015.

R. Kolpakov and G. Kucherov, Searching for gapped palindromes, Theoretical Computer Science, vol.410, issue.51, pp.5365-5373, 2009.
DOI : 10.1016/j.tcs.2009.09.013

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=