Overall viscoelastic properties of 2D and two-phase periodic composites constituted of elliptical and rectangular heterogeneities

Abstract : This paper presents analytical solutions for the effective rheological viscoelastic properties of 2D periodic structures. The solutions, based on Fourier series analysis, are derived first in the Laplace-Carson (LC) space for different inclusion shapes (rectangle or ellipse) and arrangements. The effective results are obtained in the form of rational functions of the LC transform variable. Two inversion methods are used to find the relaxation behavior. The first one is based on the exact inverse of the LC transform while the second approximates the overall behavior by using a Standard Linear Solid model, which yields very simple analytical formulas for the coefficients entering the constitutive equations. Results of the two methods are compared in the case of an application to real materials.
Type de document :
Article dans une revue
European Journal of Mechanics - A/Solids, Elsevier, 2017, 64, pp.186-201. 〈10.1016/j.euromechsol.2017.03.004〉
Liste complète des métadonnées

https://hal-auf.archives-ouvertes.fr/hal-01516371
Contributeur : Guy Bonnet <>
Soumis le : vendredi 5 mai 2017 - 11:52:18
Dernière modification le : jeudi 11 janvier 2018 - 06:22:28
Document(s) archivé(s) le : dimanche 6 août 2017 - 12:12:23

Fichier

to et al-2017-ejma-solids-visc...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Quy-Dong To, Sy Tuan Nguyen, Guy Bonnet, Minh Ngoc Vu. Overall viscoelastic properties of 2D and two-phase periodic composites constituted of elliptical and rectangular heterogeneities. European Journal of Mechanics - A/Solids, Elsevier, 2017, 64, pp.186-201. 〈10.1016/j.euromechsol.2017.03.004〉. 〈hal-01516371〉

Partager

Métriques

Consultations de la notice

189

Téléchargements de fichiers

87