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ARTICLE INFO ABSTRACT

Keywords: It is well known that the 2D Laplace Dirichlet boundary value problem with a specific contour has a degenerate
Boundary elements scale for which the boundary integral equation (BIE) has several solutions. We study here the case of the Robin
Laplace equation condition (i.e. convection condition for thermal conduction problems), and show that this problem has also one

Plane problems
Degenerate scale
Robin condition

degenerate scale. The cases of the interior problem and of the exterior problem are quite different. For the Robin
interior problem, the degenerate scale is the same as for the Dirichlet problem. For the Robin exterior problem,
the degenerate scale is always larger than for the Dirichlet problem and has some asymptotic properties. The

Convecti
onvection cases of several simple boundaries like ellipse, equilateral triangle, square and rectangle are numerically
investigated and the results are compared with the analytically predicted asymptotic behavior.

An important result is that avoiding a contour leading to a degenerate Robin problem cannot be achieved as
simply as in the case of Dirichlet boundary condition by introducing a large reference scale into the Green's
function.

1. Introduction %u(xb + fprG(x. Yia- u(.\‘b‘;livdsy =0xepl,
. a
1.1. The case of Dirichlet and Neumann boundary conditions withu =0onpl; g = ;"= fpr'i = L G(x.y) = - 1/2xIn(k - yI). 3)
The existence of a degenerate scale for the Laplace equation with Reciprocally, a non null solution of (3) gives a non null solution of

Dirichlet in the plane is well known [1-9], for the Helmholtz problem  the exterior problem (1) and (2) thanks to the representation formula
[10] and also (with Dirichlet condition) for plane elasticity [11-16] and (e.g. [21]. Analogous results will be obtained in part 4 for the Robin
for the biharmonic equation [17-19]. For any C* simple closed curve I, problem.

there is a p scale such that there is a solution to the following exterior The BIE for the interior Dirichlet problem is the same as for the
problem on pI", the exterior of pI" [20]: exterior problem and so has non null solutions at the degenerate scale
but the representation formula leads to a null solution for the interior

{A“ =0x€pl™: problem. The discrepancy between the non-null solution of the exterior
ux)=0x¢epl. (1) problem and the null solution of the interior problem has been

examined using complex methods in [22]. The case of the interior
problem with Robin condition will be investigated in part 3.
For Neumann boundary condition there is no such phenomenon.
The interior BIE has a solution only if the compatibility condition
qdS, = 0 is satisfied and the solution is unique up to an additive

with u € C*pI™)n C'(pI'~ U pr) and with the radiative condition
below that will be assumed in the following:

u(x) = u(r, 8) = — %ln(r) + O(r");

w__ 1, or?). constant [23]. The exterior problem has also only one solution up to an
ar 2ar (2) additive constant. The radiative condition (2) can be fulfilled only if
It can be seen that a non null solution u of (1) and (2) is also a solution /}qu-" =1

f BIE [20]:
SRR [20] 1.2. The problem of the Robin boundary condition

We consider the following Robin condition for the interior problem:

* Corresponding author.
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0
Vb[i + tuo) =0.
on

If the boundary is not at its degenerate scale for Dirichlet condition, we
conclude that % +n = 0 and then u’ is the solution of the interior

(16)

problem with homogeneous Robin condition and so «° = 0 and u=0.
Then Eq. (14) has only the null solution as proved in [23]. So, if the
domain is at a degenerate scale for the interior Robin problem, it is at
the degenerate scale for the Dirichlet problem.

3.2. If adomain is at the degenerate scale for the Dirichlet problem, it
is also at a degenerate scale for the Robin problem

We consider now that the domain is at the degenerate scale for the
Dirichlet problem. There is a function @ such that Vy(®) =0 and
p(®) = 1 with p(®) the integral of @ on I" [11]. We consider now the
problem:

{ Au=0xer";
u _
;+tu—¢xel". 17)

It can be proved, that this problem (with # > 0) has a solution (for
example by changing the scale and using integral methods (see [23])).
Then this solution satisfies the standard BIE. Using the boundary
condition in the BIE we get that the boundary value u, of u satisfies
(14). We must also prove that u, is non null. Applying p to the
boundary condition, we get: p(@)=1= p(%) + 1p(uy) = tp(uy) since
p(%’) =0, and so u, # 0.

Finding the degenerate scale for the interior Robin problem reduces
to the well known problem of finding the degenerate scale for the
Dirichlet problem as already shown for the case of a circle. From a
mathematical view, this means evaluating the logarithmic capacity (e.g.
[23]). Several numerical methods have also been investigated [22,29-
31].

4. The general case of the exterior problem

This section is devoted to the mathematical study of the degenerate
scale for the exterior problem. For a quick reading, the reader can go
to Section 4.3 and note the conclusions of 4.4: there is one degenerate

scale and this degenerate scale is a decreasing function of t.

4.1. Link between the BIE non null solution and a characterization of
the degenerate scale for the exterior Robin problem

We consider possible non null solutions u, of (7). Using operator
notations it writes out:

[— W, + %I+IVO](u0)=O.

(18)

Then we consider the following functions [23]:
u =1V (ug) — W(ug): (19)
wt = 1tV ug) — WHug). (20)

The functions »~ and «* are harmonic, ¥~ behaves at oo like

—'jfT“olnlxl + o(Ixl). Using the boundary values of V* and W* and the
BIE (18) we find that «* = 0 on the boundary. Then, «* is the solution
of the interior homogeneous Dirichlet problem and then: «* = 0. By
applying % and using the values of the normal derivative of V* and W*
(see Appendix), we get:

1
W*+—)tu — N,(uy) = 0.
[ () 2( o) — No(ug) @1

We consider now «~ and the boundary value of d;n—_ — tu”. Using the

properties of the normal derivatives of V™ and W~ (see appendix), we
get:

ou” _ 1 - 1
(; — tu ] = (WJ - 31 - NO](tuo) - r(rV (ug) — [Wo + E)(uo)).

Jreo
2

(22)

It can be observed that # 0, elsewhere «™(x) = 0 if ll = oo and
u” is the unique solution of the exterior Robin problem tending to 0 at
o (see for example [23]) and is therefore null, and also wu,.

Then, % # 0 and, up to a multiplicative factor, «™ is a solution of
the following problem:

X _wm=0xerl;

{ Au=0xerl™";
) (23)

with the radiative conditions (2).
Reciprocally, if u is a non null solution to the above problem, it
satisfies the BIE (18).

4.2. Introduction of an auxiliary problem

We consider the exterior problem: to find u and a constant @
satisfying the following conditions:

Au=0xerl;
du - .
;—tu-Oxel‘.

u=—éln(r)+£+0(r"«g‘='—=—ﬁ+0(r'2)r—> 0. (24)

Let us show now that the above problem (24) has a unique solution.

We refer to reference [23]; we assume that the curve I"is ¢* and
thatx = 0 ¢ I'. Then [23], the following problem has a unique solution
(u, w).

wueCryncrur),wer;
Au=0xerl";
'f;‘f—m:L(x) xel LeC\):

@ - O -
u=;+0(r l):;":O(r Z)r—v 0. (25)
We solve the problem (25) with:
L(x) = %(al;b(l -t lnlxl). 26)

Then we see that v = « — —Inlx|is a solution to (24). This solution is
unique, because the difference between two solutions of (24) is the
solution of (25) with L=0 and (« = 0, @ = 0) is the unique solution to
this problem.

4.3. Definition of the degenerate scale factor for an exterior Robin
problem

Instead of thinking in terms of scaling of the problem, we think in
terms of changing the unit length. This is equivalent for a Dirichlet
problem, but not for a Robin problem because the term t is homo-
geneous to the inverse of a length. Dividing by p the unit of length, we
define:

uw(X) = u(px); I, = pI™; I, = pI". @7

The vector n is the outward pointing normal for the interior problem
(Fig. 4). Then, if u is solution of (24), it can be seen that u, is solution of



0
Vo(ﬂ + m"] =0.
n

If the boundary is not at its degenerate scale for Dirichlet condition, we

(16)

conclude that % + n = 0 and then u° is the solution of the interior
problem with homogeneous Robin condition and so «® = 0 and uy=0.
Then Eq. (14) has only the null solution as proved in [23]. So, if the
domain is at a degenerate scale for the interior Robin problem, it is at
the degenerate scale for the Dirichlet problem.

3.2. If adomain is at the degenerate scale for the Dirichlet problem, it
is also at a degenerate scale for the Robin problem

We consider now that the domain is at the degenerate scale for the
Dirichlet problem. There is a function @ such that Vy(®) =0 and
p(@) = 1 with p(®) the integral of @ on I'[11]. We consider now the
problem:

{ Au=0xerl";
du —
& tu=@xerl. a7

It can be proved, that this problem (with r > 0) has a solution (for
example by changing the scale and using integral methods (see [23])).
Then this solution satisfies the standard BIE. Using the boundary
condition in the BIE we get that the boundary value u, of u satisfies
(14). We must also prove that u, is non null. Applying p to the
boundary condition, we get: p(®)=1= p(%) + tp(uy) = tp(uy) since
p(%") =0, and so u, # 0.

Finding the degenerate scale for the interior Robin problem reduces
to the well known problem of finding the degenerate scale for the
Dirichlet problem as already shown for the case of a circle. From a
mathematical view, this means evaluating the logarithmic capacity (e.g.
[23]). Several numerical methods have also been investigated [22,29—
31].

4. The general case of the exterior problem

This section is devoted to the mathematical study of the degenerate
scale for the exterior problem. For a quick reading, the reader can go
to Section 4.3 and note the conclusions of 4.4: there is one degenerate

scale and this degenerate scale is a decreasing function of t.

4.1. Link between the BIE non null solution and a characterization of
the degenerate scale for the exterior Robin problem

We consider possible non null solutions u, of (7). Using operator
notations it writes out:

(- W, + ;—I+IVD)(MD)=0.

(18)

Then we consider the following functions [23]:
u” =1V (ug) — W(ug): (19)
ut = tV¥ug) — W), (20)

The functions »~ and «* are harmonic, ¥~ behaves at oo like

lj;.uo

2

T—Inixl + o(Ixl). Using the boundary values of v* and w* and the
BIE (18) we find that «* = 0 on the boundary. Then, «* is the solution
of the interior homogeneous Dirichlet problem and then: «* = 0. By
applying % and using the values of the normal derivative of V* and W+
(see Appendix), we get:

1
W*+—](ru ) — Ny(up) = 0.
(o > 0 ol¥#o @1

We consider now «~ and the boundary value of % — tu”. Using the

properties of the normal derivatives of V™ and W™ (see appendix), we
get:

ou” _ 1 _ 1
(; —tu ] = [WJ - 51 - NO](tuo) - t(rV (ug) — (Wo + 3)(140)).

Jwo
2

(22)

It can be observed that # 0, elsewhere «™(x) = 0 if el = oo and
u” is the unique solution of the exterior Robin problem tending to 0 at
o (see for example [23]) and is therefore null, and also u,.

Then, rT"O # 0 and, up to a multiplicative factor, «~ is a solution of
the following problem:

X _m=0xerl: (23)

{ Au=0xer";
an

with the radiative conditions (2).
Reciprocally, if u is a non null solution to the above problem, it
satisfies the BIE (18).

4.2. Introduction of an auxiliary problem

We consider the exterior problem: to find u and a constant @
satisfying the following conditions:

Au=0xerl;
du - 0
x-m-Oxel‘.

u=- %In(r)+%+0(r_'§‘.:=—$+O(r_2)r—> 0. 24)

Let us show now that the above problem (24) has a unique solution.

We refer to reference [23]; we assume that the curve I"is €* and
that x = 0 ¢ I'. Then [23], the following problem has a unique solution
(u, w).

wecryncrur,weR;
Au=0xerl":
%—tu:L(x) xel Lec\@):
®

- du -2
u=;+0(r l):;=O(r yr = oo. (25)

We solve the problem (25) with:

L(x) = L( dinixl _ lnlxl).
on

27 (26)

Then we see thatv = u — %lnlxl is a solution to (24). This solution is
unique, because the difference between two solutions of (24) is the
solution of (25) with L=0 and (« = 0, @ = 0) is the unique solution to
this problem.

4.3. Definition of the degenerate scale factor for an exterior Robin
problem

Instead of thinking in terms of scaling of the problem, we think in
terms of changing the unit length. This is equivalent for a Dirichlet
problem, but not for a Robin problem because the term t is homo-
geneous to the inverse of a length. Dividing by p the unit of length, we
define:
u(X)=u(px): I, =pl I, =pI. 27)
The vector n is the outward pointing normal for the interior problem
(Fig. 4). Then, if u is solution of (24), it can be seen that u, is solution of



{Au,=0x€eT;
du
—”—iu‘,:Oer'p:
m  p

1 1 ® 1. Ou 1 -
U,=——lIn(r)— —Inp+ —+0(r ) — == —+00"")r = .
b= T T g YOG =T T O

(28)

The parameter t/p can be understood as the value of t in the new unit
system. So we see that for p = expw, the problem has a solution with
the asymptotic condition u, = ::'In(lxl) + O(1/Ixl) when Ix| = co. Then,
the Eq. (23) has a non-null solution and Eq. (18) has also a non -null
solution with the standard fundamental solution (see Section 4.1). This
defines the degenerate scale. For ¢+ — oo, the problem tends to the
Dirichlet problem. This is a generalization of the characterization
proposed by Hsiao and Kleinmann [20] in the case of Dirichlet
boundary condition. The existence and uniqueness are shown in [20]
for Dirichlet problem and have been extended to the Robin case in
Section 4.2.

4.4. The degenerate scale factor of the exterior problem is a
decreasing function of t

We consider the problem of a circle of radius R, with Robin
coefficient t,. Substituting the parameters Ry. , by pRy. t5/p into (9), we
get the following condition for the degenerate scale factor p:

Yo
—( pRy)In( pRy) = 1
p(ﬂ 0)In( pRy) (29)

We get the following value of the degenerate scale factor:

p= l_elmdtox

R, (30)

This example suggests that the degenerate scale factor is a
decreasing function of t,. In that section, we prove it.

Let us consider two values 1., of t, with #,> #,> 0, and the
corresponding solutions (u#;, @), (u,. @,). We consider also Cp, the
circle of center O and radius R. We assume that R is large enough so
that I ¢ G;. We denote by Dy, the connected set bounded by Cr and I'.

Using the Green's second formula we get:

—0= ou, _ duy
- Ln(ulAuz = u)Au)dV =0 = /a;)k (u, n u:an )dS @1

(with n the interior normal of dDg). The right hand term can be split
into an integral I; on I" and an integral I, on Cg. Using the Robin
condition, we get:

uy 0w ouy ou
1,=f(u,—2—u, tas= [ SR LU
r on “on r\t t)on on (32)

Let us consider a point P where u; reaches its maximum value. This
point is on the boundary of Dy because of the maximum principle
applied to the harmonic function u;. As u; decreases like —In (R)/27 as
R — oo, it is possible to find a sufficiently large value of R, so that the
maximum is not reached on Cy if R > R, and therefore, it is reached on
I.

If the maximum were strictly positive, using the boundary condition
we would conclude that du;/on > 0 at this point of I" and this point
would not be a maximum. Then, u; is negative or null on I" and
therefore du,/on <0 on I.

The same applies to u,. Taking into account the assumptions made
about t; and t», we finally conclude: 7, > 0.

Let us study the asymptotic behavior of I, when R — oo.

We have:

_ Ou, ou, o oy ou,
L= /CR (u, Pl uzx)ds = _/(; (u,; - uZE)RdG
- f’[ _hR o o(i)) 1, O(L))]
0 P4 27 R\ 27 R
- (_lnR + & + L))(L + 0(]_)) dO
27 2z RN\ 2% R

_@ze) o k)
2z R

(33)

It is concluded that I, = (@, — @,)/27. As [ =—1 and L, >0 if
f > t, > 0, we deduce that @, > @,. We finally conclude that w and p are
decreasing functions of t. The Dirichlet condition corresponds to t
infinite and it induces that the degenerate scale for the Dirichlet
condition is smaller than for the Robin condition. In particular, if a
contour is smaller than the one which is at the degenerate scale for
Dirichlet condition, it is not at the degenerate scale for any Robin
condition. The proof is also true if ¢; and t, are not constant on I

5. Numerical search of degenerate scales for the Robin
condition

5.1. Numerical methods

The numerical search for degenerate scales is based on the classical
solution of boundary value problems by Boundary Element Methods
(BEM). To build the searching method, the influence matrices [G] and
[H] are produced for a given boundary I" by using the solution of the
Boundary Element Method with constant elements. These influence
matrices relate the discretized displacements and normal fluxes at
points along the boundary located at the centers of boundary elements
by:

[H][«] - [G]lg] =0 (34)

where [u] is a column vector containing the values of the potential at
nodes of the boundary and [¢] contains the normal derivatives of u at
the same points. Conformly to usual practice in the field of BEM, the
normal that is used in order to compute the normal derivatives is
oriented outward the domain under consideration, i.e. n, for the
exterior problem and n for the interior problem. Therefore, if I' is at
a degenerate scale for the boundary condition, with the convention

above for the normal, [¢] = — #[«] and [«] is solution of the numerical
system of linear equations:
([H] + 1[GD[u] = 0. (35)

5.1.1. Computation of the scaling factor

The solution of the boundary value problem (21) can be found by
introducing the scaling factor p, leading to the expression of the scaled
Green's function:

1 1 1
G= —ln[—] =Gy — Eln(p) =G, -C

2z \pr (36)
with Gy = %ln(%) and
In(p) = @ = 22C. (37)
The numerical system becomes:
([H] + 1[G] — tC[B])[u] = 0. (38)

where [B] is the matrix whose each line contains at column j the length
of element j.

Finally, tC is the generalized eigenvalue of ([H] + #[G]. [B]). From a
practical point of view, all eigenvalues but one are found very large and it is
better suited to compute the generalized eigenvalues of ([B]. [H] + #[G]).
All these eigenvalues are very small except one positive eigenvalue ¢ and
C= i Finally, the scaling factor p is given by:



2
p=eu (39)

As shown previously, the contour pI” obtained by this procedure is at the
degenerate scale for the convection constant equal to #/p. This method is
quite similar to the computation of the smallest singular value of [G] for the
Dirichlet problem [3].

5.1.2. Computation of the convection constant 1, making degenerate a
given homothetical contour

As seen before, starting from a given contour I"which is degenerate
for a Dirichlet boundary condition, every contour 7, being homothetical
to I'is degenerate for an unknown value #, of the convection constant.

So, it is convenient to study all homothetical contours pI' and to
find for any value of p the value of t for which pI” is degenerate. Starting
from the numerical system of linear Egs. (32) written for I', the system
of linear equations for pI" can be obtained by replacing [G] by [G,] given
by:

[G] = pIGo] — 5-PIn(P)IB. o~

Having built [Gyl, it is straightforward to build [G,] for any p.
Finally, the linear system becomes:

1
([H] + tp[GyD)lu] — f;ﬂln (p)[B] =0 @1

and the value 7, of ¢ for which the contour pI' is degenerate is the
generalized eigenvalue of ([H]. — p[G,] + ipln( p)IB]).

It is important to notice that the factor p is no more considered as a
change of unit length. Therefore the contour 7, is degenerate for 7,,
which is not divided by p as for'; in the scaling procedure.

5.1.3. Case of the interior problem

Both methods work perfectly for the exterior problems. However,
for the interior problem, it has been shown previously that the domain
at the degenerate scale for Dirichlet boundary condition is at the
degenerate scale for Robin condition and any value of t. The first
method based on scaling gives this solution. Reversely, when looking
for , related to a given value of p by using the second method, it has
been found numerically that the generalized eigenvalue problem does
not provide this result, which would correspond to a huge number of
generalized eigenvalues. However, having computed the eigenvalues of
[H] + 1[Gy] for different values of t, it has been verified that there is
always a very small eigenvalue, of the order of 10 compared to other
eigenvalues (for a meshing containing 500 boundary elements) and,
therefore, it confirms that the domain which is degenerate for Dirichlet
boundary condition is also degenerate for any t in the case of Robin
boundary condition.

5.2. Numerical examples

For exterior domains, this method has been used for domains like:
circles, squares, rectangles, ellipses, segments. In every case, the
scaling factor p is computed for an initial domain which is degenerate
for Dirichlet boundary condition. The discretization over the boundary
was performed using 200 elements, giving a precision around 10~*. For
all these domains except rectangles, the analytical value of the
degenerate scale for Dirichlet boundary condition is known, while for
rectangles, the degenerate scales related to Dirichlet boundary condi-
tion for different shape factors have been obtained numerically, leading
to the values of Fig. 2.

Knowing all degenerate scales for different boundaries, the pre-
viously described method has shown that all curves p(r) have a trend
similar to the one obtained for the circle, which is in p = ¢'”*. Therefore,
Fig. 3 shows the values of p. ¢™'" as a function of t for a range of
moderate values of t. This product is obviously equal to 1 fo the circle,
is near to 1 for the ellipse and departs from this value for other

b/a

Fig. 2. The degenerate length bg,, of the long side of a rectangle for Dirichlet boundary
condition as a function of the ratio between the long side and the short side.

1
0.95 ]
- 0.9 1
zﬁ ——segment
a osst /| ellipse i
“square
-~ triangular
0.8 + rectangular J
° circle
0.75
0.5 1 15 2 25

t

Fig. 3. The value of p. e™V" as a function of ¢ for various boundaries (medium values of
t); the ratio of the sides of the rectangle and the ratio of the axes of the ellipse are both 3.
contours up to the case of the segment for which the value of p. s
0.75 around t=0.6. For every case, the value of p. e — 1/t is nearer to 1
for higher values of t.

The same method will allow us to obtain the numerical results for
the asymptotic studies reported thereafter.

6. Introduction of a solution based on complex numbers for
the exterior problem

6.1. Robin boundary equation using a complex potential

We use a method similar to the one used for obtaining exact
degenerate scales in elasticity [13,15].

If u is a solution of an exterior Laplace problem in I'", there exists a

complex analytic, possibly multivalued, function fsuch that:

1 - . . -
u(x) = E(f(z) +f @) withz=ux,+ix, €l

(42)
We need to write the boundary condition for f (see Fig. 4).
w_ . fe+ee”) +F @ +ee”) ~ ) -F@)
m - e-0 2
i@+ e @ +T @ + ee™F ) - f@) - F @) + 0)
=0 2%
o+ @
- 2 ’ (43)
The Robin condition (23) writes out:
R(f (2) - tf(2) = 0. (449



Fig. 4. Notations for the calculus of dw/an.
6.2. Use of conformal mappings

We consider a conformal mapping w(z) from the outside of the unit
circle C to the outside of the considered boundary I" such that w has a
Laurent series as follows:

w(z) = 2+ A/z + o(1/2). (45)

Then I is at the degenerate scale for the Dirichlet condition (e.g.
[22]). We consider now W(z) = pw(z) and try to find p, the degenerate
scale of I" for the Robin condition (see Fig. 5). From the result in 4.4, we
have always p > 1.

We assume that @(¢) is the solution for the exterior Robin problem
with boundary 7, and with /p; i.e. p is the degenerate scale for I" and
the Robin condition with the parameter t. The function @({) must
satisfy the boundary Eq. (44) and the following condition at infinity

1
D) =- EIH(C) = D). (46)

@y({) being a harmonic function tending to 0 at infinity.

Now, we have to find the value of ¢ as a function of z. The tangent
vector t is transformed as follows [32]: t,(W(z)) = tc(z);::zl. As the
transform W is conformal and the orientation is unchanged, we have

the same relaﬁon for the outwards normal vectors:
n,(W(z) = nc(z)l:,:;'l, We deduce that:
W) =2 forig=1.

W)l (47)

Following the same approach as for elasticity [13,15], we define ¢:

1

2

1
P(z)=dW(z) =— —Inp - ;ln(z) = $y(2). 48)

where ¢(z) is a holomorphic function tending to 0 when Izl = co.
Substituting (47), (48) into (44), using R(In(z)) = 0 for Izl = 1, we get:

A W(z) A

ncr C /_*pr‘ npr

C pr’

Fig. 5. Notations for conformal mapping.

1 1 1t t
Rl—z———| — + ¢o@) |+ ——Inp + —¢(2)| =0 lz1=1.
( ﬂ'wml(Zﬂz N ) 2 T ] (49)

and finally, we have:

1 1 1
m(_z (— + ¢'0(z)) + Z—Ktlnp + t¢0(z)) =0 lz=1.

w'(2)I\ 27z (50)

7. Asymptotic behavior for large t (small values of p — 1)
7.1. Determination of the first parameters py, p; of the asymptotic
expansion

We write @ =1/t and we consider an asymptotic development
p=p, +ap +ol@) with also ¢ =y, +ad, +ol@ for a—0.
Substituting these expressions into (50), and multiplying by a we get:

S '}
0

In(py) z | 1 ; 1A 2
x( . *"’W)*“”‘[‘mz*"’w +;p + gy, |+ @) =0.

(51)
From (51), we get two equations:
R(In(p))/27 + ¢y,) = 0; (52)
z |1 , 1 A
Rl -— — + +——+ =0.
[ Iw'I(erz 4"”] 27 p, ""“] (53)

We can write for a holomorphic function g(z) on C~ continuous on
C, such that g(z) tends to g(co) at o (e.g. [33]):

d_
/Cg(z)',z = 2mg(co). (54)

Then we can also write:
2x 2x dz
fo R(g(z))dd = m(fo g(z)dB) = m(fcg(z)g) = R(27g(e0)).

Integrating (52), applying the relation (55) to ¢ and using that
Poo(e0) = 0, we deduce: Inp, = 0; p, = 1, that is the classical result for
the degenerate scale for the Dirichlet problem which is found by setting
t = co. Then, we also deduce M(¢,(z)) =0 for z€ C. Considering
Ry (1/2)), we find that it is a harmonic function which is null on €~
and continuous. As a consequence, it is also null in the disk. Finally, we
conclude ¢y (z) = ib, b € R and then ¢'y(z) =0. Then taking the
integral of (53) on C, applying (55) to ¢o; and using that ¢,,(c0) = 0,
we get:

(55)

1 2% 1
= — —dé.
=5l I ()] (56)

For a circle we find p, = I; then we deduce p ~ 1 + 1/ and that is
consistent with (9) where we replace t by t/p and R by p.

7.2. A lower bound for p;

Let us prove now that p, > 1.

We have:

1 2 dé 1 dz
/= __/ N / n
2z Jo W)  2z|Jc w'(2)

If w'(z) is a holomorphic function which is non-null and continuous
in CTu C, then I/w’ is also holomorphic in €™ and continuous in
C™ U C. Taking into account (45), we have 1/w’(c0) = 1. Then by (54),

_dz_
C zw'(2)
since p, = 1 for the circle.

(57)

we have = 27 and we conclude p, > 1. This inequality is sharp




10
3 ---- Numerical solution
— Asymptotic solution
a 10"
-2/
10
10’ 10' 10° 10°
t

Fig. 6. Comparison between the asymptotic solution for large values of t and the
numerical solution in the case of an ellipse with a ratio of radii=3 (log-log plot).

7.3. Case of ellipses

The ellipse is obtained by the conformal mapping w(z) = z + a/z.
For a=1, the ellipse reduces to a segment. When a — 1, the ellipse
tends to a segment and p; — oo.

After integration of (56), the expression of p, is given by:

2 K( 2Ja
(1l + a) 1+a (58)

=
where K is the complete elliptic integral of first kind [34,35]. Fig. 6

shows for the case of an ellipse the values of the coefficient p and the
value estimated by using the asymptotic formula for large values of t.

8. Asymptotic behavior for small t (large values of p)
8.1. Study of the parameter b governing the behavior of p for small t
Multiplying (50) by Iw'(z)I/In(p) we get:

-2 {1 4 g + QL OB
”[ Zln(p)(Z;rz+¢°(Z))+ 2 )

We assume that ¢y(z. 1) = ¢y (2) + o), ¢'o(z. 1) = @'5o(2) + o(t) and
look for an asymptotic expression for small values of t.

1

(59)

= bt + o(t),
In (p) (60)
with b > 0. We obtain:
m[—z(br + o(t))(L + ¢oo(2) + o(t)) + tM + ro(t)| = 0.
27z 2 (61)

Considering the terms in t, we finally get the following condition:

b , Iw'(z)l)
Rl-—-0b (z)+ ——|=0.
( 2 @+ (62)

As the function ¢(z) tends to 0 when Izl = oo, it has an asymptotic
expansion a/z + O(1/7%) and the function ¢, has an asymptotic
expansion —alz? +0(1/z%) and then ' — 0 when Iz — oo.
Assuming that ¢/ is continuous on C* U € and applying (55), we get:

/02Jr [w'(e)|do
27 ’ (63)

In fact, it can be shown easily that the integral in (63) is the perimeter P
of the curve I', so b = P/2x.

8.2. Lower bound for the coefficient b

We can give a lower bound of b assuming that w’ is continuous on
C*u C and noting that w'(z) = 1aslzl = oo [33]):

2% . 2 d
/(0 ’ iz
w'(e")|dé > w (z)—‘ = 2x.
[) l ! /o z (64)

We conclude b > 1 and the bound is sharp as it is attained for the circle.
From the study of the n-armed star, it is readily seen that the coefficient
b has no upper bound. Indeed, the perimeter of such stars can be made
as large as chosen, if n is large enough.

8.3. Some exact values of the asymptotic coefficient b

For the circle of radius 1, we have:
b=1, (65)

and this is consistent with the exact formula (9).

We consider now an ellipse with semi axes 1 + a, 1 — a. Such an
ellipse is at its degenerate scale since its logarithmic capacity is equal to
((1 + @) + (1 — a)/2 = 1[36]. The length of this ellipse is then given by
the complete elliptic integral of the second kind [34,35]:

po 2ot 1)E( 2Ja

l+a) (66)

n

Fig. 7 gives the graph of b(a). It can be checked that for the circle
a=0, E(0) = #/2 and then b = 1. For a segment, we have a=1, E(1) = 1
and then b = 4/x, as expected, because the perimeter of a segment is
equal to twice its length.

For a regular n-polygon, we consider the Schwarz-Christoffel
mapping w(z) = foz(l + ¢"¥"d¢ [33,37) that maps the outside of the
unit circle on the outside of the regular n-polygon. As the mapping w(z)
behaves like z + O(1/z) when Izl = oo, the polygon is at its degenerate
scale. We can find the length of one side of this n-polygon in [38] and
we finally conclude:

p=Zp(L L, 1)
n 2 2 n (67)

where B is the Beta function [35]. If n tends to oo, we have
B(1/2, 1/2) = n, and we recover the value for the circle b=1. (Fig. 7).
Numerically, it can be found that » ~ 1.1321 for the equilateral triangle
and b ~ 1.0787 for the square.

For a regular n-armed star with arms of length R the logarithmic
capacity is: R/4’" [36]. The condition for the degenerate scale for
Dirichlet condition is R = 4", We deduce the value of b:

1

b= n4ﬁ

(68)

120

115

110

1.05

1.00

0 025 0.50 0.75 1
a

Fig. 7. Value of b as a function of the parameter a for an ellipse.
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Fig. 8. Value of p as a function of ¢ for an ellipse with ratio of radii equal to 3:
comparison with the asymptotic solution for small values of t.

This value can be made as large as chosen, as noticed before.

Fig. 8 compares the asymptotic formula of p for large t with the
numerically computed value for an ellipse whose ratio of radii is equal
to 3.

8.4. The inclusion I'* c I'* does not imply the inequality p(t) > pp(t)

The analogous implication holds for the Laplace Dirichlet problem
[39] and there is a similar property for plane elasticity with Dirichlet
condition [14]. But we can build a counter example in the Robin case.
We consider the n armed star S, with arm length equal to 4. S,, is at
its degenerate scale for the Dirichlet problem and we get from (60) and
(68) the asymptotic value of the degenerate scale ps, (1) forr — 0:

n

In (s (1) ~ W%' (69)

We consider the circle C,, with radius 4", The n armed star is included

Appendix
We refer to [23,28] throughout this appendix.

Notations

in C,. Using (9) we find that the degenerate scale for C, is
1

_ L1 m
In (pc") =y In(4""") (70)
Then:
Ps, n 1)1
In i vl
e, n4 4" ) (71)

We conclude that for n > 4 and t small, we have ”s,,(‘) < pc,,(' ). It shows
that the inclusion of a contour within another one does not lead always
to the inverse inequality between the two degenerated scales. In this
case, the curves p(r) related to these two kinds of contours cross each
other.

9. Conclusion

With Robin condition, there is one degenerate scale for interior
problems and one degenerate scale for exterior problems, but these two
cases are very different. For the interior problem, the degenerate scale
is the same as for Dirichlet condition. For the exterior problem, the
degenerate scale is always larger than the one related to Dirichlet
condition. In that case, it has been possible to give the asymptotic
behavior for small and large values of t. For small values of t the
boundary condition tends to a Neumann condition and the degenerate
scale tends to infinity (for Neumann condition there is no degenerate
scale).

A numerical procedure has been described to obtain the degenerate
scales by using influence matrices built from BEM formulation of the
boundary value problem. Using this method, numerical computations
have allowed to compare successfully the numerical values with the
asymptotic formulas.

From a practical point of view, it can be emphasized that, contrarily
to the case of Dirichlet boundary condition where the choice of a
reference scale within the Green's function ensures the uniqueness of
the solution, it is no more possible, because any chosen reference scale
can lead to non-uniqueness in the case of Robin condition.

We sum up here the definitions of the different integral operators. First, the single layer operators are defined by:

Viu) = / u(x)G(x, y)dS’. xert
r

Viu) = f u(x)G(x, y)dSy: xel™:
r

Volu) = '/r u(x)G(x, y)dSy: xerl.

We also define the double layer operators, and the operator Nj:

+ _ IG(x, y) +.
w (u)—[_u(x)Tdeyxer B

W“(u):/;u(x)%

dS,x el

0G(x, y)
Wyu) = /ru(x)Tvdey xerl:

(72)

(73)

(74)

(75)

(76)

(77)



"G("' ’)ds xerl.

Wu) = fr u(x)———=—=
The operator Ny is defined as the normal derivative of W* on I'.

Jump relations
V)=V ()= Vu)yxer:

Whu) = (% )(u)xel‘:

~|—

W) = ( %)(u) xel.
Normal derivatives on the boundary

aVu) = (W* + %)(u) xer:

A,V () = (wo* - %)(u) xer;

0,WHu)=o,W (u)=Nu)yxer.
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