A Reduced Order representation of the Poincaré-Steklov operator: an application to coupled multi-physics problems

Matteo Aletti 1 Damiano Lombardi 1
1 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, UPMC - Université Pierre et Marie Curie - Paris 6, Inria de Paris
Abstract : This work investigates a model reduction method applied to coupled multi-physics systems. The case in which a system of interest interacts with an external system is considered. An approximation of the \PoinSte operator is computed by simulating, in an offline phase, the external problem when the inputs are the Laplace-Beltrami eigenfunctions defined at the interface. In the online phase, only the reduced representation of the operator is needed to account for the influence of the external problem on the main system. An online basis enrichment is proposed in order to guarantee a precise reduced-order computation. Several test-cases are proposed on different fluid-structure couplings.
Type de document :
Article dans une revue
International Journal for Numerical Methods in Engineering, Wiley, 2017
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal-auf.archives-ouvertes.fr/hal-01396286
Contributeur : Matteo Aletti <>
Soumis le : lundi 14 novembre 2016 - 11:40:01
Dernière modification le : jeudi 11 janvier 2018 - 06:28:03
Document(s) archivé(s) le : lundi 20 mars 2017 - 20:08:23

Fichier

manuscript.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01396286, version 1

Collections

Citation

Matteo Aletti, Damiano Lombardi. A Reduced Order representation of the Poincaré-Steklov operator: an application to coupled multi-physics problems. International Journal for Numerical Methods in Engineering, Wiley, 2017. 〈hal-01396286〉

Partager

Métriques

Consultations de la notice

420

Téléchargements de fichiers

190