A. Blanchet, J. Dolbeault, M. Escobedo, and J. Fernandez, Asymptotic behaviour for small mass in the two-dimensional parabolic???elliptic Keller???Segel model, Journal of Mathematical Analysis and Applications, vol.361, issue.2, pp.361-533, 2010.
DOI : 10.1016/j.jmaa.2009.07.034

URL : https://hal.archives-ouvertes.fr/hal-00349216

A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electronic Journal of Differential Equations, pp.1-32, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00113519

Y. Brenier, Averaged Multivalued Solutions for Scalar Conservation Laws, SIAM Journal on Numerical Analysis, vol.21, issue.6, pp.1013-1037, 1984.
DOI : 10.1137/0721063

Y. Brenier, R??solution d'??quations d'??volution quasilin??aires en dimension N d'espace ?? l'aide d'??quations lin??aires en dimension N + 1, Journal of Differential Equations, vol.50, issue.3, pp.375-390, 1983.
DOI : 10.1016/0022-0396(83)90067-0

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in R2, Communications in Mathematical Sciences, vol.6, issue.2, pp.417-447, 2008.
DOI : 10.4310/CMS.2008.v6.n2.a8

C. Caputo and A. Vasseur, Global Regularity of Solutions to Systems of Reaction???Diffusion with Sub-Quadratic Growth in Any Dimension, Communications in Partial Differential Equations, vol.66, issue.10, pp.10-12, 2009.
DOI : 10.1002/cpa.3160380303

L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic???parabolic Keller???Segel chemotaxis system in critical spaces, Mathematical and Computer Modelling, vol.47, issue.7-8, pp.7-8, 2008.
DOI : 10.1016/j.mcm.2007.06.005

L. Corrias, B. Perthame, and H. Zaag, A chemotaxis model motivated by angiogenesis, Comptes Rendus Mathematique, vol.336, issue.2, pp.141-146, 2003.
DOI : 10.1016/S1631-073X(02)00008-0

L. Corrias, B. Perthame, and H. Zaag, Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions, Milan Journal of Mathematics, vol.72, issue.1, pp.1-29, 2004.
DOI : 10.1007/s00032-003-0026-x

L. Corrias, B. Perthame, and H. Zaag, L p and L ? a priori estimates for some chemotaxis models and applications to the Cauchy problem. The mechanism of the spatio-temporal pattern arising in reaction diffusion system, 2004.

F. A. Davidson, A. R. Anderson, and M. A. Chaplain, Steady-state solutions of a generic model for the formation of capillary networks, Applied Mathematics Letters, vol.13, issue.5, pp.127-132, 2000.
DOI : 10.1016/S0893-9659(00)00044-6

E. and D. Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat, vol.3, issue.3, pp.25-43, 1957.

L. C. Evans, A survey of entropy methods for partial differential equations, Bulletin of the American Mathematical Society, vol.41, issue.04, pp.409-438, 2004.
DOI : 10.1090/S0273-0979-04-01032-8

M. A. Fontelos, A. Friedman, and B. Hu, Mathematical Analysis of a Model for the Initiation of Angiogenesis, SIAM Journal on Mathematical Analysis, vol.33, issue.6, pp.1330-1355, 2002.
DOI : 10.1137/S0036141001385046

T. Goudon and A. Vasseur, Regularity analysis for systems of reaction-diffusion equations, Annales scientifiques de l'??cole normale sup??rieure, vol.43, issue.1, pp.117-131, 2010.
DOI : 10.24033/asens.2117

URL : https://hal.archives-ouvertes.fr/inria-00384366

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society, vol.329, issue.2, pp.819-824, 1992.
DOI : 10.1090/S0002-9947-1992-1046835-6

K. Kang and J. J. , Qualitative Behavior of a Keller???Segel Model with Non-Diffusive Memory, Communications in Partial Differential Equations, vol.35, issue.2, pp.245-274, 2010.
DOI : 10.1137/S0036141000337796

E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, vol.30, issue.2, pp.225-234, 1971.
DOI : 10.1016/0022-5193(71)90050-6

H. Kozono and Y. Sugiyama, Local existence and finite time blow-up in the 2-D KellerSegel system, J. Evol. Equ, vol.8, issue.353378, 2008.

H. Kozono and Y. Sugiyama, Global strong solution to the semi-linear Keller???Segel system of parabolic???parabolic type with small data in scale invariant spaces, Journal of Differential Equations, vol.247, issue.1, pp.1-32, 2009.
DOI : 10.1016/j.jde.2009.03.027

H. Kozono and Y. Sugiyama, Strong solutions to the Keller-Segel system with the weak

H. A. Levine, M. Nilsen-hamilton, and B. D. Sleeman, Mathematical modeling of the onset of capillary formation initiating angiogenesis, Journal of Mathematical Biology, vol.42, issue.3, pp.195-238, 2001.
DOI : 10.1007/s002850000037

D. Li, T. Li, and K. Zhao, On a hyperbolic-parabolic system modeling repulsive chemotaxis, Mathematical Models and Methods in Applied Sciences, vol.21, issue.8, 2011.

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl, vol.5, p.581601, 1995.

T. Nagai, Blowup of nonradial solutions to parabolicelliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl, vol.6, issue.3755, 2001.

B. Perthame, Kinetic Formulation of Conservation Laws Oxford Lecture Series in Mathematics and its Applications No. 21, 2002.

P. Tilli, Remarks on the H??lder continuity of solutions to elliptic equations in divergence form, Calculus of Variations and Partial Differential Equations, vol.80, issue.3, pp.395-401, 2006.
DOI : 10.1007/s00526-005-0348-3

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller???Segel model, Journal of Differential Equations, vol.248, issue.12, pp.2889-2905, 2010.
DOI : 10.1016/j.jde.2010.02.008