Skip to Main content Skip to Navigation
Journal articles

Regularization in Keller-Segel type systems and the De Giorgi method

Abstract : Fokker-Planck systems modeling chemotaxis, haptotaxis and angiogenesis are numerous and have been widely studied. Several results exist that concern the gain of L p integrability but methods for proving regularizing effects in L ∞ are still very few. Here, we consider a special example, related to the Keller-Segel system, which is both illuminating and singular by lack of diffusion on the second equation (the chemical concentration). We show the gain of L ∞ integrability (strong hypercontractivity) when the initial data belongs to the scale-invariant space. Our proof is based on De Giorgi's technique for parabolic equations. We present this technique in a formalism which might be easier that the usual iteration method. It uses an additional continuous parameter and makes the relation to kinetic formulations for hyperbolic conservation laws.
Document type :
Journal articles
Complete list of metadatas

Cited literature [28 references]  Display  Hide  Download
Contributor : Benoît Perthame <>
Submitted on : Saturday, October 1, 2016 - 12:31:13 AM
Last modification on : Tuesday, December 8, 2020 - 3:38:39 AM
Long-term archiving on: : Monday, January 2, 2017 - 12:24:52 PM


Files produced by the author(s)



Benoît Perthame, Alexis Vasseur. Regularization in Keller-Segel type systems and the De Giorgi method. Communications in Mathematical Sciences, International Press, 2012, 10 (2), pp.463 - 476. ⟨10.4310/CMS.2012.v10.n2.a2⟩. ⟨hal-01374730⟩



Record views


Files downloads