Regularization in Keller-Segel type systems and the De Giorgi method

Abstract : Fokker-Planck systems modeling chemotaxis, haptotaxis and angiogenesis are numerous and have been widely studied. Several results exist that concern the gain of L p integrability but methods for proving regularizing effects in L ∞ are still very few. Here, we consider a special example, related to the Keller-Segel system, which is both illuminating and singular by lack of diffusion on the second equation (the chemical concentration). We show the gain of L ∞ integrability (strong hypercontractivity) when the initial data belongs to the scale-invariant space. Our proof is based on De Giorgi's technique for parabolic equations. We present this technique in a formalism which might be easier that the usual iteration method. It uses an additional continuous parameter and makes the relation to kinetic formulations for hyperbolic conservation laws.
Type de document :
Article dans une revue
Communications in Mathematical Sciences, International Press, 2012, 10 (2), pp.463 - 476. 〈10.4310/CMS.2012.v10.n2.a2〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal-auf.archives-ouvertes.fr/hal-01374730
Contributeur : Benoît Perthame <>
Soumis le : samedi 1 octobre 2016 - 00:31:13
Dernière modification le : vendredi 16 novembre 2018 - 01:53:48
Document(s) archivé(s) le : lundi 2 janvier 2017 - 12:24:52

Fichier

Perthame_Vasseur_revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Benoît Perthame, Alexis Vasseur. Regularization in Keller-Segel type systems and the De Giorgi method. Communications in Mathematical Sciences, International Press, 2012, 10 (2), pp.463 - 476. 〈10.4310/CMS.2012.v10.n2.a2〉. 〈hal-01374730〉

Partager

Métriques

Consultations de la notice

574

Téléchargements de fichiers

187