K. Eames, S. Bansal, S. Frost, and S. Riley, Six challenges in measuring contact networks for use in modelling, Epidemics, vol.10, pp.72-77, 2015.
DOI : 10.1016/j.epidem.2014.08.006

J. M. Read, W. J. Edmunds, S. Riley, J. Lessler, and D. A. Cummings, Close encounters of the infectious kind: methods to measure social mixing behaviour, Epidemiology and Infection, vol.5, issue.12, pp.2117-2130, 2012.
DOI : 10.3201/eid1211.060426

M. Salathé, A high-resolution human contact network for infectious disease transmission, Proceedings of the National Academy of Sciences, vol.74, issue.1 Pt 2, pp.22020-22025, 2010.
DOI : 10.1103/PhysRevE.74.016110

J. Stehlé, High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School, PLoS ONE, vol.3, issue.2, p.23176, 2011.
DOI : 10.1371/journal.pone.0023176.s005

P. Vanhems, Estimating potential infection transmission routes in hospital wards using wearable proximity sensors, Plos One, vol.6, p.73970, 2013.
DOI : 10.1371/journal.pone.0073970

URL : https://hal.archives-ouvertes.fr/hal-00862591

A. Pentland, Honest signals, Proceedings of the 19th ACM international conference on Multimedia, MM '11, 2008.
DOI : 10.1145/2072298.2072374

D. J. Toth, The role of heterogeneity in contact timing and duration in network models of influenza spread in schools, Journal of The Royal Society Interface, vol.12, issue.108, p.20150279, 2015.
DOI : 10.1017/S0950268812000842

T. Hornbeck, Using Sensor Networks to Study the Effect of Peripatetic Healthcare Workers on the Spread of Hospital-Associated Infections, Journal of Infectious Diseases, vol.206, issue.10, p.1549, 2012.
DOI : 10.1093/infdis/jis542

A. Stopczynski, Measuring Large-Scale Social Networks with High Resolution, PLoS ONE, vol.28, issue.4, p.9597, 2014.
DOI : 10.1371/journal.pone.0095978.g015

URL : https://doi.org/10.1371/journal.pone.0095978

R. Mastrandrea, J. Fournet, and A. Barrat, Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys, PLOS ONE, vol.14, issue.6, p.136497, 2015.
DOI : 10.1371/journal.pone.0136497.s005

URL : https://hal.archives-ouvertes.fr/hal-01238308

T. Smieszek, How should social mixing be measured: comparing web-based survey and sensor-based methods, BMC Infectious Diseases, vol.8, issue.Suppl 5, p.136, 2014.
DOI : 10.1186/1471-2458-8-61

URL : https://bmcinfectdis.biomedcentral.com/track/pdf/10.1186/1471-2334-14-136?site=bmcinfectdis.biomedcentral.com

M. Granovetter, Network Sampling: Some First Steps, American Journal of Sociology, vol.81, issue.6, p.1287, 1976.
DOI : 10.1086/226224

O. Frank, Sampling and estimation in large social networks, Social Networks, vol.1, issue.1, p.91, 1979.
DOI : 10.1016/0378-8733(78)90015-1

D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, On the bias of traceroute sampling: Or, power-law degree distributions in regular graphs, Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing STOC' 05, pp.694-703, 2005.

S. H. Lee, P. Kim, and H. Jeong, Statistical properties of sampled networks, Physical Review E, vol.6, issue.1, p.16102, 2006.
DOI : 10.1103/PhysRevLett.87.258701

G. Kossinets, Effects of missing data in social networks, Social Networks, vol.28, issue.3, pp.247-268, 2006.
DOI : 10.1016/j.socnet.2005.07.002

J. Onnela and N. A. Christakis, Spreading paths in partially observed social networks, Physical Review E, vol.56, issue.3, p.36106, 2012.
DOI : 10.1073/pnas.1000261107

N. Blagus, L. Bajec, and M. , Empirical comparison of network sampling techniques, p.2449

A. C. Ghani, C. A. Donnelly, and G. P. Garnett, Sampling biases and missing data in explorations of sexual partner networks for the spread of sexually transmitted diseases, Statistics in Medicine, vol.17, issue.18, pp.2079-2097, 1998.
DOI : 10.1002/(SICI)1097-0258(19980930)17:18<2079::AID-SIM902>3.0.CO;2-H

A. C. Ghani and G. P. Garnett, Measuring sexual partner networks for transmission of sexually transmitted diseases, Journal of the Royal Statistical Society: Series A (Statistics in Society), vol.161, issue.2, pp.227-238, 1998.
DOI : 10.1111/1467-985X.00101

G. Bobashev, R. J. Morris, and D. M. Goedecke, Sampling for Global Epidemic Models and the Topology of an International Airport Network, PLoS ONE, vol.28, issue.9, p.3154, 2008.
DOI : 10.1371/journal.pone.0003154.t002

M. Génois, C. Vestergaard, C. Cattuto, and A. Barrat, Compensating for population sampling in simulations of epidemic spread on temporal contact networks, Nature Communications, vol.05, p.9860, 2015.
DOI : 10.1103/PhysRevE.83.066113

J. Leskovec and C. Faloutsos, Sampling from large graphs, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '06, pp.631-636, 2006.
DOI : 10.1145/1150402.1150479

F. Viger, A. Barrat, L. Dall-'asta, C. Zhang, and E. Kolaczyk, What is the real size of a sampled network? The case of the Internet, Physical Review E, vol.40, issue.5, p.56111, 2007.
DOI : 10.1140/epjb/e2004-00111-4

URL : https://hal.archives-ouvertes.fr/hal-00014555

C. A. Bliss, C. M. Danforth, and P. S. Dodds, Estimation of Global Network Statistics from Incomplete Data, PLoS ONE, vol.28, issue.10, p.108471, 2014.
DOI : 10.1371/journal.pone.0108471.s001

Y. Zhang, E. D. Kolaczyk, and B. D. Spencer, Estimating network degree distributions under sampling: An inverse problem, with applications to monitoring social media networks, The Annals of Applied Statistics, vol.9, issue.1, p.166, 2015.
DOI : 10.1214/14-AOAS800

URL : http://arxiv.org/pdf/1305.4977

J. Stehlé, Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees, BMC Medicine, vol.6, issue.Suppl 5, 2011.
DOI : 10.1371/journal.pone.0017144

J. Fournet and A. Barrat, Contact Patterns among High School Students, PLoS ONE, vol.59, issue.9, p.107878, 2014.
DOI : 10.1371/journal.pone.0107878.s001

URL : https://hal.archives-ouvertes.fr/hal-01065922

T. Smieszek, L. Fiebig, and R. W. Scholz, Models of epidemics: when contact repetition and clustering should be included, Theoretical Biology and Medical Modelling, vol.6, issue.1, p.11, 2009.
DOI : 10.1186/1742-4682-6-11

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709892/pdf

S. Maslov, K. Sneppen, and A. Zaliznyak, Detection of topological patterns in complex networks: correlation profile of the internet, Physica A: Statistical Mechanics and its Applications, vol.333, pp.529-540, 2004.
DOI : 10.1016/j.physa.2003.06.002

L. Coviello, M. Franceschetti, and I. Rahwan, Limits of friendship networks in predicting epidemic risk, p.8368, 2015.