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This paper deals with the well-posedness of a class of multivalued Lur’e systems, which consist
of a nonlinear dynamical system in negative feedback interconnection with a static multivalued
nonlinearity. The objective is to provide a detailed analysis of the conditions which guarantee that
a certain operator, constructed from the static nonlinearity, is maximal monotone. This in turn
assures the existence and the uniqueness of the solutions. Examples (nonlinear complementarity
systems, nonlinear relay systems) illustrate the developments. A stability result is also given.

1. Introduction

The problem of well-posedness and stability of so-called Lur’e dynamical systems
has attracted the interest of researchers in control and in applied mathematics
since a long time (see e.g. [30] for a survey). More recently nonsmooth multi-
valued Lur’e systems that consist of the negative feedback interconnection of a
smooth system �x(t) = f(x(t), λ(t)) with output y = g(x, λ), with a multivalued
mapping λ ∈ Φ(y, t), have been studied in [8, 10, 11, 13, 26]. This is in close con-
nection with studies on complementarity dynamical systems [11, 17, 18, 27, 28],
relay systems [21, 24, 31], projected dynamical systems [12, 27], and evolution vari-
ational inequalities [25, 29], since all these systems may be interpreted as Lur’e
systems with a multivalued feedback path (see [9, 24] for surveys). These sys-
tems deserve the name of Lur’e systems because passivity constraints on both the
smooth system and the multivalued mapping are often encountered in the cited
works. Applications may be found in electrical circuits with ideal electronic de-
vices [2, 3, 17], in state observers design [14], or in control of systems with friction
[16].

One of the recognized difficulties in the analysis of such Lur’e systems is when
the output y depends on the multiplier λ, which is common in applications (see
e.g. Section 14.2.1 in [1]). For instance in the linear time-invariant case y =
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Cx+Dλ for some non zero matrix D. This has been solved for dissipative linear
complementarity systems (when Φ(·) is the subdifferential of the indicator function
of IRm

+ , y = Cx+Dλ and f(x, λ) = Ax+Bλ) in [18]. In [13] the same problem has
been tackled with a more general multivalued mapping Φ, relying either on Kato’s
theorem or on maximal monotone operators. In the first case a specific structure
on the matrix D is imposed, while in the second case D is supposed to be positive
semi-definite. In this paper the maximal monotone approach of [13] is studied in
more depth, and the vector field f(x, λ) is nonlinear with respect to x.

Notations. For x, y ∈ IRn, we denote by 〈x, y〉 the euclidean scalar product in IRn.
If x ∈ IRn, ‖x‖ =

√

〈x, x〉 is the corresponding norm of x while if M ∈ IRn×n, then
‖M‖ = sup‖y‖=1{‖My‖} is the subordinate matrix norm of M . For a multivalued
application T : IRn

⇉ IRn, we denote respectively by R(T ) and Dom(T ) its range
and its domain, i.e. R(T ) = {y ∈ IRn : ∃x ∈ IRn : y ∈ Tx} and Dom(T ) = {x ∈
IRn : Tx 6= ∅}. For a matrix M ∈ IRn×n, we denote respectively by R(M) and
ker(M) its range and its kernel, i.e. R(M) = {y ∈ IRn : ∃x ∈ IRn : y = Mx} and
ker(M) = {x ∈ IRn : Mx = 0}. For a nonempty set C ⊂ IRn, the dual cone of C is
the nonempty closed convex cone C⋆ defined by C⋆ := {w ∈ IRn : 〈w, v〉 ≥ 0, ∀v ∈
C}. The affine hull of C denoted by aff(C) is the intersection of all the affine sets
that include C. The relative interior of C denoted by rint(C) is the interior of C
relative to aff(C), i.e.: rint{C} = {x ∈ C : ∃ ε > 0 : B(x, ε) ∩ aff(C) ⊂ aff(C)},
where B(x, ε) = {y ∈ IRn : ‖x− y‖ < ε}. The closure of a set C is denoted as C.

2. Mathematical tools in convex analysis

Let f : IRn → IR∪{+∞} be a proper convex and lower semi-continuous function,
we denote by Dom(f) := {x ∈ IRn : f(x) < +∞} the domain of the function
f . Recall that the Fenchel transform f ⋆ of f is the proper, convex and lower
semi-continuous function defined by

(∀z ∈ IRn) : f ⋆(z) = sup
x∈ Dom(f)

{〈x, z〉 − f(x)}.

The subdifferential ∂f(x) of f at x ∈ IRn is defined by

∂f(x) = {ω ∈ IRn : f(v)− f(x) ≥ 〈ω, v − x〉, ∀v ∈ IRn}.

We denote by Dom(∂f) := {x ∈ IRn : ∂f(x) 6= ∅} the domain of the subdifferential
operator ∂f : IRn → IRn. Recall that (see e.g. Theorem 2, Chapter 10, Section 3
in [4]):

Dom(∂f) ⊂ Dom(f) ⊂ Dom(∂f). (1)

Let x0 be any element in the domain Dom(f) of f , the recession function f∞ of f
is defined by

(∀x ∈ IRn) : f∞(x) = lim
λ→+∞

1

λ
f(x0 + λx).

The function f∞ : IRn → IR∪{+∞} is a proper convex and lower semi-continuous
function which describes the asymptotic behavior of f .
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Let K ⊂ IRn be a nonempty closed convex set. Let x0 be any element in K. The 

recession cone of K is defined by

K∞ =
⋂

λ>0

1

λ
(K − x0).

The set K∞ is a nonempty closed convex cone that is described in terms of the
directions which recede from K. The indicator function of K is denoted as ΨK .

Let us here recall some important properties of the recession function and recession
cone (see e.g. Chapter 3 in [36]):

Proposition 2.1. a) Let f : IRn → IR∪{+∞} be a proper convex and lower

semi-continuous function. Then

(∀α ≥ 0, x ∈ IRn) : f∞(αx) = αf∞(x), (2)

(∀ x, v ∈ IRn) : f∞(v) ≥ f(x+ v)− f(x), (3)

and

(∀x ∈ IRn) : f∞(x) = lim inf
t→+∞,v→x

f(tv)

t
. (4)

b) Let f1 : IR
n → IR∪{+∞} and f2 : IR

n → IR∪{+∞} be two proper, convex and

lower semi-continuous functions. Then

(∀x ∈ IRn) : (f1 + f2)∞(x) ≥ (f1)∞(x) + (f2)∞(x). (5)

c) Let f : IRn → IR∪{+∞} be a proper, convex and lower semi-continuous function

and let K be a nonempty closed convex set. Then

(∀x ∈ IRn) : (f +ΨK)∞(x) = f∞(x) + (ΨK)∞(x). (6)

d) Let K ⊂ IRn be a nonempty, closed and convex set. Then

(∀x ∈ IRn) : (ΨK)∞(x) = ΨK∞
(x), (7)

(∀x ∈ K, e ∈ K∞) : x+ e ∈ K. (8)

e) If K ⊂ IRn is a nonempty closed and convex cone then K∞ = K.

f) If K ⊂ IRn is a nonempty compact and convex set then K∞ = {0}.

g) Let K1 and K2 be two nonempty closed convex sets. If K1 ∩ K2 6= ∅ then

(K1 ∩K2)∞ = (K1)∞ ∩ (K2)∞.

3. Nonsmooth nonlinear Lur’e dynamical system

Let A : IRn → IRn be a (possibly) nonlinear operator, B ∈ IRn×p, C ∈ IRp×n

and D ∈ IRp×p given matrices, f ∈ C0(IR+; IR) such that f ′ ∈ L1
loc(IR+; IR

n) and
Φ : IRp → IR∪{+∞} a given proper convex and lower semi-continuous func-
tion. Let x0 ∈ IRn be some initial condition, we consider the problem: Find
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x ∈ C0(IR+; IR
n) such that x′ ∈ L∞

loc(IR+; IR
n) and x right-differentiable on IR+,

λ ∈ C0(IR+; IR
p) and y ∈ C0(IR+; IR

p) satisfying the nonsmooth Lur’e system
NSLS(A,B,C,D, f,Φ, x0):



















x(0) = x0

x′(t) = A(x(t)) +Bλ(t) + f(t), a.e. t ≥ 0

y(t) = Cx(t) +Dλ(t), t ≥ 0

λ(t) ∈ −∂Φ(y(t)), t ≥ 0.

(9)

We set
(∀z ∈ IRp) : Ξ(z) := Φ⋆(−z). (10)

Assumption 3.1. There exists z0 ∈ IRp at which Ξ is continuous.

Assumption 3.1 is a simple qualitative condition that is required to ensure that
(see e.g. Proposition 2.4.5 in [33]):

(∀λ ∈ IRp) : ∂Ξ(λ) = −∂Φ⋆(−λ).

The system λ ∈ −∂Φ(y) can thus also be written as:

y ∈ −∂Ξ(λ). (11)

Using these notations, we see that the problem NSLS(A,B,C,D, f,Φ, x0) reduces
to the system:



















x(0) = x0

x′(t) = A(x(t)) +Bλ(t) + f(t), a.e. t ≥ 0

y(t) = Cx(t) +Dλ(t), t ≥ 0

y(t) ∈ −∂Ξ(λ(t)), t ≥ 0.

(12)

Remark 3.2. Taking Φ(.) = Ψ{0} then ∂Ξ(.) = {0}, hence our framework encap-
sulates equality constraints Cx +Dλ = 0 which are common in applications like
electrical circuits with nonsmooth multivalued electronic devices [2, 3].

It is clear from (12) that the important operator for the study of this Lur’e system
is x 7→ (D + ∂Ξ)−1(−Cx). As shown in [13], a way to show the well-posedness of
NSLS(A,B,C,D, f,Φ, x0) is to characterize this operator as a maximal monotone
operator. The sequel of this paper is devoted to refine the characterization of the
conditions under which maximal monotonicity holds.

4. Characterization of the set Dom((D + ∂Ξ)−1) = R(D + ∂Ξ)

Assumption 4.1. We suppose that the matrix D is positive semi-definite, i.e.
(∀x ∈ IRp) : 〈Dx, x〉 ≥ 0.

It is important for applications in electrical circuits that the matrix D is allowed
to be non-symmetric, with a non-zero skew-symmetric part, see [3, p. 72, p. 170].
Then (see e.g. [23]):

ker(D) = ker(DT ) ⊂ ker(D +DT ) (13)
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Thus:

R(D +DT ) ⊂ R(D) = R(DT ).

Moreover:

ker(D +DT ) = {x ∈ IRp : 〈Dx, x〉 = 0}.

The system
{

y(t) = Cx(t) +Dλ(t)

y(t) ∈ −∂Ξ(λ(t))

may be rewritten as:

Cx(t) +Dλ(t) ∈ −∂Ξ(λ(t))

or also

−Cx(t) ∈ (D + ∂Ξ)(λ(t)). (14)

The mapping x 7→ ∂Ξ(x) is a maximal monotone mapping with domain Dom(∂Ξ)
as the subdifferential of a proper convex and lower semi-continuous function (See
Proposition 1, Section 2.13 in [34]). The mapping x 7→ Dx is linear monotone
and continuous on IRp and is thus (see Proposition 1, Section 2.3 in [34]) a max-
imal monotone mapping with domain IRp. Here Dom(∂Ξ) ∩ int Dom(D.) =
Dom(∂Ξ) 6= ∅ and the Sum Theorem of Rockafellar (see Theorem 32.I in [37])
ensures that the operator D + ∂Ξ : Dom(∂Ξ) ⇉ R(D + ∂Ξ) is also maximal
monotone. The inverse operator:

(D + ∂Ξ)−1 : R(D + ∂Ξ) ⇉ Dom(∂Ξ)

is thus (see Proposition 32.5 in [37]) also maximal monotone. The relation in (14)
may be written as:

λ(t) ∈ (D + ∂Ξ)−1(−Cx(t)). (15)

Before going further, we need to provide a good characterization of the set Dom((D
+∂Ξ)−1) = R(D + ∂Ξ).

Proposition 4.2. Let F : IRp → IR ∪ {+∞} be a proper convex and lower semi-

continuous function. Then

Dom(F ⋆) = {q ∈ IRp : F∞(v) ≥ 〈q, v〉, ∀v ∈ IRp}

and

int{Dom(F ⋆)} = {q ∈ IRp : F∞(v) > 〈q, v〉, ∀v ∈ IRp, v 6= 0}

Proof. See Corollary 13.3.4 in [35].

Proposition 4.3. We have:

(∀z ∈ IRp) : Φ⋆(z) = Ξ(−z).

(∀z ∈ IRp) : Ξ⋆(z) = Φ(−z).
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Proof. By definition Ξ(z) = Φ⋆(−z) and thus Φ⋆(z) = Ξ(−z). Moreover, we have

Ξ⋆(z) = sup
x∈Dom(Ξ)

{〈x, z〉 − Ξ(x)} = sup
x∈Dom(Ξ)

{〈x, z〉 − Φ⋆(−x)}

= sup
−X∈Dom(Ξ)

{−〈X, z〉 − Φ⋆(X)} = sup
X∈Dom(Ξ◦(−idIRp ))

{〈X, (−z)〉 − Φ⋆(X)}

= sup
X∈Dom(Φ⋆)

{〈X, (−z)〉 − Φ⋆(X)} = (Φ⋆)⋆(−z) = Φ(−z).

Proposition 4.4. Suppose that Assumption 3.1 holds. Then:

R(∂Ξ) = Dom(−∂(Φ ◦ (−idIRp))), (16)

and

Dom(∂Ξ) = R(−∂(Φ ◦ (−idIRp))), (17)

Moreover it always holds that:

R(∂Ξ) = Dom(Ξ⋆). (18)

and

R(∂Ξ) ⊂ Dom(Ξ⋆), (19)

Proof. The Fenchel correspondence

w ∈ ∂Ξ(x) ⇔ x ∈ ∂Ξ⋆(w) (20)

ensures that R(∂Ξ) = Dom(∂Ξ⋆) and Dom(∂Ξ) = R(∂Ξ⋆) while Proposition 4.3
and Assumption 3.1 guarantee that ∂Ξ⋆ = −∂(Φ◦(−idIRp)). The results in (16) and
(17) follow. The results in (19) and (18) are direct consequences of the property
recalled in (1).

Theorem 4.5. Suppose that Assumptions 3.1 and 4.1 hold. Let us set

∆(D,Ξ) = {z ∈ Dom(Ξ)∞ : Dz ∈ Dom(Ξ∞)⋆} (21)

and

Υ = Ξ +Ψker(D+DT ) +Ψ∆(D,Ξ). (22)

We have

R(D + ∂Ξ) ⊂ −DT (Dom(∂Ξ)) + Dom(Υ⋆). (23)

If int{Dom(Υ⋆)} 6= ∅ then

−DT (Dom(∂Ξ)) + int{dom(Υ⋆)} ⊂ R(D + ∂Ξ). (24)

Proof. We first remark that

Υ∞ = Ξ∞ +Ψker(D+DT )∩∆(D,Ξ). (25)

Indeed, we have

Υ∞ = (Ξ + Ψker(D+DT ) +Ψ∆(D,Ξ))∞ = (Ξ + Ψker(D+DT )∩∆(D,Ξ))∞.
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The set ker(D+DT )∩∆(D, Ξ) is nonempty, closed and convex and from properties
c) and d) of Proposition 2.1, we get:

(Ξ + Ψker(D+DT )∩∆(D,Ξ))∞ = Ξ∞ + (Ψker(D+DT )∩∆(D,Ξ))∞

= Ξ∞ +Ψ(ker(D+DT )∩∆(D,Ξ))∞ .

The sets ker(D + DT ) and ∆(D,Ξ) are closed and convex and the intersection
ker(D + DT ) ∩ ∆(D,Ξ) is nonempty (since 0 ∈ ker(D + DT ) ∩ ∆(D,Ξ)). Thus
using property g) of Proposition 2.1:

(ker(D +DT ) ∩∆(D,Ξ))∞ = ker(D +DT )∞ ∩∆(D,Ξ)∞

Both ker(D + DT ) (as a vector subspace of IRp) and ∆(D,Ξ) are closed convex
cones and thus from poperty e) of Proposition 2.1, we obtain ker(D + DT )∞ =
ker(D +DT ) and ∆(D,Ξ)∞ = ∆(D,Ξ). The result in (25) follows.

Let us now prove the inclusion in (23). Let q ∈ R(D + ∂Ξ). There exists x ∈
Dom(∂Ξ) such that q ∈ Dx+ ∂Ξ(x), i.e.

〈Dx− q, v − x〉+ Ξ(v)− Ξ(x) ≥ 0, ∀v ∈ IRp .

Thus
〈Dx− q, e〉+ Ξ(x+ e)− Ξ(x) ≥ 0, ∀e ∈ ker(D +DT ),

where we used the fact that e may be considered to belong to any set in IRp. For
all e ∈ ker(D + DT ) we have 〈Dx, e〉 = 〈x,DT e〉 = −〈x,De〉 = −〈DTx, e〉 and
thus

−〈(DTx+ q), e〉+ Ξ(x+ e)− Ξ(x) ≥ 0, ∀e ∈ ker(D +DT ).

Using property a) of Proposition 2.1, we see that:

Ξ∞(e) ≥ Ξ(x+ e)− Ξ(x).

Thus
−〈(DTx+ q), e〉+ Ξ∞(e) ≥ 0, ∀e ∈ ker(D +DT )

and consequently

−〈(DTx+ q), e〉+ Ξ∞(e) ≥ 0, ∀e ∈ ker(D +DT ) ∩∆(D,Ξ).

This last inequality is clearly equivalent to

−〈(DTx+ q), e〉+ Ξ∞(e) + Ψker(D+DT )∩∆(D,Ξ)(e) ≥ 0, ∀e ∈ IRp .

Using the result in (25), we get:

−〈(DTx+ q), e〉+Υ∞(e) ≥ 0, ∀e ∈ IRp .

As a consequence of Proposition 4.2, we get

q +DTx ∈ Dom(Υ⋆).

7



It results that

q ∈ −DT (Dom(∂Ξ)) + dom(Υ⋆),

which proves (23).

It remains to prove the inclusion in (24). Let q ∈ −DT (Dom(∂Ξ))+int{Dom(Υ⋆)}
be given. For all i ∈ IN, i 6= 0, the matrix 1

i
I + D is positive definite and there

exists ui ∈ Dom(∂Ξ) such that

〈(

1

i
I +D

)

ui − q, v − ui

〉

+ Ξ(v)− Ξ(ui) ≥ 0, ∀v ∈ IRp . (26)

We claim that the sequence {ui} ≡ {ui; i ∈ IN \{0}} is bounded. Suppose on the
contrary that ||ui|| → +∞ as i → +∞. Then, for i large enough, ||ui|| 6= 0 and
we may set: zi :=

ui

||ui||
. There exists a subsequence, again denoted by {zi}, such

that limi→+∞ zi = z with ||z|| = 1.

Let us first remark that

(∀ i ∈ IN \{0}) : ui ∈ Dom(∂Ξ) ⊂ Dom(Ξ) ⊂ dom(Ξ).

The set Dom(Ξ) is nonempty, closed and convex. Let x0 ∈ Dom(Ξ) be any element
in Dom(Ξ). Let λ > 0 be given. For i large enough, λ

||ui||
< 1 and thus

λ

||ui||
ui +

(

1−
λ

||ui||

)

x0 ∈ dom(Ξ).

Taking the limit as i → +∞, we get λz + x0 ∈ Dom(Ξ). This result holds for any
λ > 0 and thus

z ∈
⋂

λ>0

1

λ
(Dom(Ξ)− x0) = Dom(Ξ)∞. (27)

Let e ∈ Dom(Ξ∞) be given. From part a) of Proposition 2.1, we have:

Ξ(ui + e) ≤ Ξ(ui) + Ξ∞(e) < +∞,

and thus ui + e ∈ Dom(Ξ). We may set v = ui + e in (26) to get

〈

1

i
ui + (Dui − q), e

〉

+ Ξ(ui + e)− Ξ(ui) ≥ 0

and thus
〈

1

i
ui, e

〉

+ 〈Dui − q, e〉+ Ξ∞(e) ≥ 0.

Notice that Ξ∞(e) < +∞ since e ∈ Dom(Ξ∞) and we may therefore divide this
last relation by ||ui|| to get:

〈

1

i
zi, e

〉

+

〈

Dzi −
q

||ui||
, e

〉

+
1

||ui||
Ξ∞(e) ≥ 0.
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Taking the limit as i → +∞, we get 〈Dz, e〉 ≥ 0. This holds for any e ∈ Dom(Ξ∞) 

and thus
Dz ∈ Dom(Ξ∞)⋆. (28)

Let X0 ∈ Dom(Ξ) be given and set v = X0 in (26), we obtain:

1

i
||ui||

2 + 〈Dui, ui〉 ≤
1

i
〈ui, X0〉+ 〈Dui, X0〉 − 〈q,X0 − ui〉+Ξ(X0)− Ξ(ui). (29)

The function Ξ is proper, convex and lower semi-continuous, and thus there exists
a ≥ 0 and b ∈ IR such that:

Ξ(x) ≥ −a||x||+ b, ∀x ∈ IRp .

Thus

1

i
||ui||

2 + 〈Dui, ui〉 ≤ a||ui|| − b+
1

i
〈ui, x0〉+ 〈Dui, X0〉 − 〈q,X0 − ui〉+ Ξ(X0).

Dividing this last relation by ||ui||
2, we get:

1

i
||zi||

2 + 〈Dzi, zi〉

≤
a

||ui||
−

b

||ui||2
+

〈

Dzi,
X0

||ui||

〉

+
1

i

〈

zi,
x0

||ui||

〉

−

〈

q

||ui||
,
X0

||ui||
− zi

〉

+
Ξ(X0)

||ui||2
.

Taking the limit as i → +∞, we get 〈Dz, z〉 ≤ 0 and thus

z ∈ ker(D +DT )

since D is positive semi-definite, and using (13). Until now, we have thus proved
that

z ∈ ∆(D,Ξ) ∩ ker(D +DT ), z 6= 0.

Here q ∈ −DT (Dom(∂Ξ)) + int{dom(Υ⋆)} and as a consequence of Proposition
4.2, there exists z0 ∈ Dom(∂Ξ) ⊂ Dom(Ξ) such that

Υ∞(v) > 〈q +DT z0, v〉, ∀v ∈ IRp .

Using (25), we obtain

Ξ∞(v) > 〈q +DT z0, v〉, ∀v ∈ ker(D +DT ) ∩∆(D,Ξ), v 6= 0,

and in particular
Ξ∞(z) > 〈q +DT z0, z〉. (30)

Using now (26) with v = z0, we get also:
〈(

1

i
I +D

)

ui, ui − z0

〉

≤ −〈q, z0 − ui〉+ Ξ(z0)− Ξ(ui).

Here 〈(1
i
I +D)ui, ui〉 > 0 and thus

−

〈(

1

i
I +D

)

ui, z0

〉

− 〈q, ui − z0〉 − Ξ(z0) + Ξ(ui) < 0.
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iDividing this last relation by ||u ||, we get:

−

〈(

1

i
I +D

)

zi, z0

〉

−

〈

q, zi −
z0

||ui||

〉

−
Ξ(z0)

||ui||
+

Ξ(||ui||zi)

||ui||
< 0.

Taking the limit inferior as i → +∞, we get:

−〈(q +DT z0), z〉+ lim inf
i→+∞

Ξ(||ui||zi)

||ui||
≤ 0

and thus
−〈(q +DT z0), z〉+ Ξ∞(z) ≤ 0,

which is a contradiction to (30). The sequence {ui} is thus bounded and we may
find a subsequence, again denoted by {ui} such that limi→+∞ ui = u. Let v ∈ IRp

be given, we have

−

〈(

1

i
I +D

)

ui − q, v − ui

〉

− Ξ(v) + Ξ(ui) ≤ 0

and taking the limit inferior as i → +∞, we get

−〈Du− q, v − u〉 − Ξ(v) + Ξ(u) ≤ 0.

This holds for any v ∈ IRp so that q ∈ R(D + ∂Ξ).

Remark 4.6. i) Recalling that D is positive semi-definite, we remark that:

−DT (Dom(∂Ξ)) ⊂ −DT (IRp) = R(−DT ) = R(DT ) = R(D).

ii) If Dom(∂Ξ) = IRp then clearly

−DT (Dom(∂Ξ)) = R(D).

Remark 4.7. Theorem 4.5 allows us to characterize the set R(D + ∂Ξ). Other
characterizations exist [7]. In summary, if A and B are two monotone operators
that satisfy some property (∗) and such that A+B is maximal monotone, one has
R(A+B) = R(A) +R(B) and int[R(A+B)] = int[R(A)+R(B)] (see Theorems
3, 4 in [7]). The property (∗) is for instance satisfied by linear monotone operators
A satisfying 〈Au, u〉 ≥ α|Au|2. When R(A) +R(B) is closed and both operators
A and B are linear, then one has R(A+B) = R(A)+R(B) (see footnote (2) page
174 in [7]).

5. An existence and uniqueness result

The problem NSLS(A,B,C,D, f,Φ, x0) may be written as:










x(0) = x0

x′(t) = A(x(t)) +Bλ(t) + f(t), a.e. t ≥ 0,

Cx(t) +Dλ(t) ∈ −∂Ξ(λ(t)), ∀t ≥ 0,

or equivalently
{

x(0) = x0

x′(t) ∈ A(x(t)) +B(D + ∂Ξ)−1(−Cx(t)) + f(t), a.e. t ≥ 0.
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Assumption 5.1. There exists a symmetric and positive definite matrix P ∈ IRn×n 

such that
PB = CT .

Let us now denote by R ∈ IRn×n a symmetric positive definite square root of P ,
i.e. R2 = P . We have R2B = CT and thus

RB = R−1CT = R−TCT .

We set:
(∀t ≥ 0) : z(t) = −Rx(t).

The problem NSLS(A,B,C,D, f,Φ, x0) may be thus rewritten as:










−Rx(0) = −Rx0

−Rx′(t) ∈ −RA(R−1Rx(t))−RB(D + ∂Ξ)−1(−CR−1Rx(t))−Rf(t),

a.e. t ≥ 0

or equivalently
{

z(0) = −Rx0

z′(t) ∈ −RA(−R−1z(t))−R−TCT (D + ∂Ξ)−1(CR−1z(t))−Rf(t), a.e. t ≥ 0

Assumption 5.2. There exists ω ∈ IR such that RA(−R−1.) + ωI is maximal
monotone on IRn.

Remark 5.3. i) Assumption 5.1 was first introduced in [8]. It corresponds to an
“input-output� constraint that is satisfied by observable dissipative systems [15].

ii) Assumption 5.2 holds with ω = 0 if RA(−R−1.) is maximal monotone on IRn.

iii) If A(·) is Lipschitz continuous, i.e. there exists K > 0 such that

(∀x, y ∈ IRn) : ‖A(x)− A(y)‖ ≤ K‖x− y|,

then Assumption 5.2 is satisfied with ω ≥ K‖R‖‖R−1‖. Indeed, we have

〈RA(−R−1x)−RA(−R−1(y), x− y〉+ ω‖x− y‖2

≥ − ‖R‖‖A(−R−1x)− A(−R−1(y))‖‖x− y‖+ ω‖x− y‖2

≥ −K‖R‖‖R−1‖‖x− y‖2 + ω‖x− y‖2 ≥ 0.

In particular if A(·) is piecewise-linear (hence Lipschitz continuous) A(·) + ωI is
piecewise-linear monotone and, so, maximal. Thus it satisfies Assumption 5.2.

Assumption 5.4. We suppose that

(a) R(C) ∩
(

−DT (rint{Dom(∂Ξ)}) + int{Dom(Υ⋆)}
)

6= ∅,

(b) Dom(∂Ξ) and Dom(D + ∂Ξ)−1 are convex sets,

(c) aff(−DT (Dom(∂Ξ)) + int(Dom(Υ⋆)) = aff(Dom(D + ∂Ξ)−1).

11



Proposition 5.5. If Assumptions 3.1, 4.1, 5.1 and 5.4 hold then the operator

R−TCT (D + ∂Ξ)−1(CR−1.) : IRn
⇉ IRn; x 7→ R−TCT (D + ∂Ξ)−1(CR−1x)

is maximal monotone.

Proof. The theorem of maximal monotonicity under composition (see Theorem
12.43 in [36]) ensures that R−TCT (D + ∂Ξ)−1(CR−1.) is maximal monotone pro-
vided that

R(CR−1) ∩ rint{Dom((D + ∂Ξ)−1)} 6= ∅.

Here R(CR−1) = R(C) and from Theorem 4.5, we know that

−DT (Dom(∂Ξ)) + int{Dom(Υ⋆)} ⊂ R(D + ∂Ξ) = Dom((D + ∂Ξ)−1)

and thus from Assumption 5.4 and [22, Lemma 16.2.3] one has

rint{−DT (Dom(∂Ξ)) + int{dom(Υ⋆)}} ⊂ rint{Dom((D + ∂Ξ)−1)}.

The sets −DT (Dom(∂Ξ)) and int{dom(Υ⋆)} are convex (see [35, Theorem 3.4] and
see (22)) so that (see Exercise 2.45 and Proposition 2.44 in [36]):

rint{−DT (Dom(∂Ξ)) + int{dom(Υ⋆)}}

= rint{−DT (Dom(∂Ξ))}+ rint{int{Dom(Υ⋆)}}

= −DT (rint{Dom(∂Ξ)}) + rint{int{Dom(Υ⋆)}}.

The set K = int{Dom(Υ⋆)} is open in IRp and thus rint{K} = K. Indeed, if
x ∈ K then x ∈ int{K} = K so that x ∈ rint{K} and K ⊂ rint{K} ⊂ K. Thus

rint{−DT (Dom(∂Ξ)) + int{dom(Υ⋆)}}

= −DT (rint{Dom(∂Ξ)}) + int{Dom(Υ⋆)}.

It results that if R(C) ∩
(

−DT (rint{Dom(∂Ξ)}) + int{Dom(Υ⋆)}
)

6= ∅ then

R(CR−1) ∩ rint{Dom((D + ∂Ξ)−1)} 6= ∅

and the result follows.

Theorem 5.6. Suppose that Assumptions 3.1–5.4 hold. Suppose also that

f ∈ C0([0,+∞[; IRn), f ′ ∈ L1
loc(0,+∞[; IRn).

If

−Cx0 ∈ −DT (Dom(∂Ξ)) + int{dom(Υ⋆)}

then there exists a unique z ∈ C0([0,+∞[; IRn) such that z′ ∈ L∞
loc(0,+∞[; IRn), z

is right-differentiable on [0,+∞[ and satisfying the relations:











z(0) = −Rx0

z′(t) ∈ −RA(−R−1z(t))−R−TCT (D + ∂Ξ)−1(CR−1z(t))−Rf(t), a.e. t ≥ 0,

CR−1z(t) ∈ −DT (Dom(∂Ξ)) + Dom(Υ⋆), ∀t ≥ 0.
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Proof. Let us set

T (x) = (31)
{

RA(−R−1x) +R−TCT (D + ∂Ξ)−1(CR−1x) if CR−1x ∈ Dom((D + ∂Ξ)−1)

∅ if CR−1x /∈ Dom((D + ∂Ξ)−1)

We remark that the operator T + ωI is maximal monotone. Indeed, Assump-
tion 5.2 ensures that the operator x 7→ RA(−R−1x) + ωx is maximal monotone
and Assumption 5.4 entails that the operator x ⇉ R−TCT (D + ∂Ξ)−1(CR−1x)
is maximal monotone. We have int{Dom(RA(−R−1.) + ωI)} = IRn and −Cx0 ∈
−DT (Dom(∂Ξ)) + int{dom(Υ⋆)} ⊂ Dom((D + ∂Ξ)−1). Thus

−Rx0 ∈ int{Dom(RA(−R−1.) + ωI)} ∩Dom(R−TCT (D + ∂Ξ)−1(CR−1.)).

The set int{Dom(RA(−R−1.) + ωI)} ∩ Dom(R−TCT (D + ∂Ξ)−1(CR−1.)) is non-
empty and thus the Sum Theorem of Rockafellar (see Theorem 32.I in [37]) ensures
that the operator T + ωI is also maximal monotone. Note that

Dom(T ) = {z ∈ IRn : CR−1z ∈ Dom((D + ∂Ξ)−1)}.

Here −Cx0 ∈ Dom((D + ∂Ξ)−1) and thus −Rx0 ∈ Dom(T ). Using a version of
Kato’s Theorem (see Corollary 2.2 in [25]), we obtain the existence of a unique
z ∈ C0([0,+∞[; IRn) such that z′ ∈ L∞

loc(0,+∞[; IRn), z is right-differentiable on
[0,+∞[ and satisfies the relations:











z(0) = −Rx0

0 ∈ z′(t) + T (z(t)) +Rf(t), a.e. t ≥ 0

z(t) ∈ Dom(T ), ∀t ≥ 0.

This gives the result since z(t) ∈ Dom(T ) entails that CR−1z(t) ∈ Dom((D +
∂Ξ)−1) ⊂ −DT (Dom(∂Ξ)) + Dom(Υ⋆).

Corollary 5.7. Suppose that Assumptions 3.1–5.4 hold. Suppose also that

f ∈ C0([0,+∞[; IRn), f ′ ∈ L1
loc(0,+∞[; IRn).

If

−Cx0 ∈ −DT (Dom(∂Ξ)) + int{dom(Υ⋆)}

then there exists a unique x ∈ C0([0,+∞[; IRn) such that x′ ∈ L∞
loc(0,+∞[; IRn), x

is right-differentiable on [0,+∞[ and satisfies the relations:











x(0) = x0

x′(t) ∈ A(x(t)) +B(D + ∂Ξ)−1(−Cx(t)) + f(t), a.e. t ≥ 0,

−Cx(t) ∈ −DT (Dom(∂Ξ)) + Dom(Υ⋆), ∀t ≥ 0.

(32)

Remark 5.8. The implicit Euler numerical method studied in [5] can be applied
to the differential inclusion in (32), with order of convergence in-between 1

2
and 1

depending on the multivalued mapping.
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6. Examples

In this section it is shown that the above developments apply to important ap-
plication cases: complementarity systems, relay systems, and mechanical systems
with Coulomb’s friction.

6.1. Nonlinear cone complementarity systems

Let us consider that Φ = ΨK where K ⊆ IRp is a non empty, closed convex cone.
The inclusion λ ∈ −∂Φ(y) is then equivalent to the complementarity relation
K⋆ ∋ λ ⊥ y ∈ K, and the Lur’e system is a nonlinear cone complementarity
system (NLCCS). Then Ξ(z) = Ψ⋆

K(−z) = Ψ−K⋆(−z) = ΨK⋆(z). Let us check
Assumption 5.4. For this we first need to calculate the set ∆(D,Ξ) in (21). We have
Ξ∞ = ΨK⋆

∞

= ΨK⋆ = Ξ, so dom(Ξ) = dom(Ξ∞) = Dom(∂Ξ) = K⋆, dom(Ξ∞)⋆ =

(K⋆)⋆ = K, Dom(Ξ)∞ = (K⋆)∞ = K⋆. Hence ∆(D,Ξ) = {z ∈ K⋆ : Dz ∈ K}.
Now we have Υ = ΨK⋆+Ψker(D+DT )+Ψ∆(D,Ξ) = ΨK⋆∩ker(D+DT )∩∆(D,Ξ) = ΨC where
C = K⋆∩ker(D+DT )∩∆(D,Ξ). Thus Υ⋆ = Ψ−C⋆ and int{Dom(Υ⋆)} =int{−C⋆},
rint{Dom(∂Ξ)} =rint{K⋆}. The conditions of Assumption 5.4 thus reduce to:











(a) R(C) ∩
(

−DT (rint{K⋆}) + int{−C⋆}
)

6= ∅,

(b) K⋆ convex, R(D + ∂ΨK⋆) convex,

(c) aff(−DTK⋆ + int(−C⋆)) = aff(R(D + ∂ΨK⋆)),

(33)

where we used that R(C) = R(CR−1) in view of Assumption 5.1. Here ∂ΨK⋆ =
NK⋆ , the normal cone to K⋆. Now we have that for all x ∈ K⋆, NK⋆(x) =
x⊥ ∩ (−K), so NK⋆ ⊂ −K. But for x = 0 we have that NK⋆(0) = −K, so finally
R(NK⋆) = −K (hence (18) holds).

• Suppose that D = 0. Then ∆(0,Ξ) = K⋆, ker(D + DT ) = IRp, and C = K⋆,
C⋆ = K. Checking (33) (a) (b) (c) then boils down to verifying that:











(a) R(C) ∩ int{−K} 6= ∅,

(b) K⋆ and K are convex,

(c) K −K = −K − (−K),

(34)

where K−K denotes the set {x−y | x ∈ K, y ∈ K}, and condition (c) is obtained
using [35, Theorem 2.7]. Conditions (34) (b) and (c) trivially hold. We infer
that Assumption 5.4 is satisfied provided that (34) (a) is satisfied. So provided
Assumptions 5.1, 5.2 and (34) (a) are satisfied, the system is always well-posed in
the sense of Theorem 5.6.

• Suppose now that D is positive definite. Then ∆(D,Ξ) = K⋆ ∩ D−1K, where
D−1K = {z ∈ IRp | Dz ∈ K}, and ker(D +DT ) = {0}. Thus C = {0}, C⋆ = IRp,
Υ = ΨK⋆ +Ψ{0} +ΨK⋆∩D−1K = Ψ{0}, and Υ⋆ = Ψ−{0}⋆ = ΨIRp = 0. Consequently
(33) reduces to:











(a) R(C) ∩ (−DT (rint{K⋆}) + int{IRp}) 6= ∅,

(b) K⋆ convex, R(D +NK⋆) = IRp convex,

(c) aff(−DTK⋆ + int(IRp)) = aff(R(D + ∂ΨK⋆)).

(35)
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Condition (35) (a) is always satisfied since R(C)∩ (−DT (rint{K⋆}) + int{IRp}) =
R(C) ∩ (−DT (rint{K⋆}) + IRp) = R(C) 6= ∅ and 0 ∈ R(C). Hence (33) (a)
is satisfied. Using (23) (24) it follows that condition (35) (b) is satisfied, and
condition (35) (c) reduces to IRp = IRp. So provided Assumptions 5.1 and 5.2 are
satisfied, the systems is always well-posed in the sense of Theorem 5.6.

• Suppose now that D is positive semi-definite and K = IRp
+. In this case we get

that ∆(D,Ξ) = {z ∈ IRp
+ | Dz ∈ IRp

+}, so ∆(D,Ξ) is a D−invariant subspace of
IRp

+. So C = IRp
+ ∩ ker(D +DT ) ∩∆(D,Ξ) = ker(D +DT ) ∩∆(D,Ξ), and by [35,

Corollary 16.4.2] we have that C⋆ = ker⋆(D+DT )+∆⋆(D,Ξ). Now by [6, Example
2.2.2] it follows that ker⋆(D+DT ) = ker⊥(D+DT ) = R(D+DT ) because D+DT

is symmetric. Also it is easy to see that ∆⋆(D,Ξ) = IRp
+, because ∆(D,Ξ) ⊂ IRp

+

so that IRp
+ ⊂ ∆⋆(D,Ξ) while ∆(D,Ξ) ⊂ IRp

+. So C⋆ = R(D +DT ) + IRp
+. Thus

the conditions (33) reduce to:










(a) R(C) ∩ (−DT IRp
+ + int(R(D +DT ) + IRp

+)) 6= ∅,

(b) R(D +NIRp
+
) convex,

(c) aff(−DT IRp
+ + int(R(D +DT ) + IRp

+)) = aff(R(D +NIRp
+
)).

(36)

Condition (36) (a) holds since both sets contain {0}, and using (23) (24) it follows
that (36) (b) holds. Thus it only remains to check (36) (c).

Remark 6.1. Existence and uniqueness of continuously differentiable solutions
for any x(0) ∈ IRn have been derived for linear cone complementarity systems
(LCCS) in [19, 20], with D ≥ 0, basing on the fact that Bλ is a singleton. Our
analysis and results are different. When A(·) is a linear operator and K = IRp

+

the system reduces to so-called linear complementarity systems which have been
studied in the field of Systems and Control [18, 28].

6.2. Nonlinear relay systems

For x ∈ IR let

sgn(x) =











−1 if x < 0

1 if x > 0

[−1, 1] if x = 0.

Let us now suppose that Φ(y) = |y1| + ... + |yp|, so that ∂Φ(y) = Sgn(y) where
Sgn(y) = (sgn(y1) · · · sgn(yp))

T . Such systems are called relay systems in the
Systems and Control literature. We can also consider Lipschitz single valued non-
linear terms in the relay function and incorporate them into the A(·) term. One
has Ξ(λ) = Ψ[−1,1]p(λ), hence dom(Ξ) = [−1, 1]p. Thus Dom(Ξ)∞ = {0} so that
∆(D,Ξ) = {0}. One has Υ = Ψ[−1,1]p +Ψker(D+DT ) +Ψ{0} = Ψ{0}, and Υ⋆ = 0. So
dom(Υ⋆) = IRp, and Dom(∂Ξ) = [−1, 1]p. The conditions of Assumption 5.4 can
be written as:











(a) R(C) ∩ (−DT [−1, 1]p + IRp) 6= ∅,

(b) Dom(∂Ξ) and R(D + ∂Ξ) are convex sets,

(c) aff(−DT [−1, 1]p + IRp) = aff(R(D +N[−1,1]p)).

(37)
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Condition (a) is satisfied since {0} belongs to both sets. Using (23) and (24)
condition (b) holds. One has −DT [−1, 1]p ⊂ IRp, and since R(N[−1,1]p) = IRp one
has R(D + N[−1,1]p) = IRp. So the condition (c) is always satisfied. Therefore
provided the Assumptions 5.1 and 5.2 hold the system is well-posed in the sense of
Theorem 5.6. As expected there is no constraint on the state since dom(Υ⋆) = IRp.

We may state more general results when Ξ is such that Dom(Ξ) is a convex compact
non empty set. Then Dom(Ξ)∞ = {0} and ∆(D,Ξ) = {0}. Then Υ = Ψ{0}, and
Υ⋆ = 0. So dom(Υ⋆) = IRp, and provided that rint{Dom(∂Ξ)} 6= ∅, the condition
(a) of Assumption 5.4 is satisfied. In such a case there is no constraint on the state.
These results permit to extend existing well-posedness results on relay systems,
see [24, §6].

Example 6.2 (system with dry friction). Let us consider a mechanical sys-
tem made of two masses m1 and m2 moving horizontally, sliding on the ground,
and linked by a spring with possible nonlinear characteristic k(·), see Figure
6.1. The masses are acted upon by some forces F1,t(t) + F1,x(x1, x2, x

′
1, x

′
2) and

F2,t(t)+F2,x(x1, x2, x
′
1, x

′
2), respectively, that represent exogeneous forces and state

dependent forces (like feedback control). The friction coefficients are µ1 > 0 and
µ2 > 0. The positions are given by x1 and x2, respectively. We assume that
during the sliding phases (non zero relative tangential velocity vtan), the friction
coefficient is varying, of the form µi(vtan). The dynamics is given by:



















m1x
′′
1(t) ∈ −m1gµ1 sgn(x

′
1(t)) + k(x2, x1)−m1gµ1(x

′
1(t))

+F1(t) + F1,x(x1(t), x2(t), x
′
1(t), x

′
2(t))

m2x
′′
2(t) ∈ −m2gµ2 sgn(x

′
2(t))− k(x2, x1)−m2gµ2(x

′
2(t))

+F2(t) + F2,x(x1(t), x2(t), x
′
1(t), x

′
2(t))

(38)

The system may be written compactly as z′(t) ∈ A(z(t)) − BSgn(Cz(t)), with

zT = (x1 x′
1 x2 x′

2)
T . Then B =

(

0 0
gµ1 0
0 0
0 gµ2

)

, C = ( 0 1 0 0
0 0 0 1 ). Any matrix P =

diag(pi) ∈ IR4×4 with p1 > 0, p3 > 0, p2 = 1
gµ1

, p4 = 1
gµ2

satisfies PB = CT .
Therefore Assumption 5.1 is satisfied. Assumption 4.1 is satisfied since D = 0,
and the nonlinear terms have to be such that Assumption 5.2 holds true.

m1
m2

k

x

F1(t, z) F2(t, z)

Figure 6.1: A mechanical system with Coulomb’s friction.

Relay systems can also model electrical circuits with ideal Zener diodes, see for
instance [3, §1.1.3, §1.1.6].
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7. A stability result

In this section, we assume that Assumptions 3.1-5.4 hold and we consider the
autonomous problem (i.e. f ≡ 0) that reduces to











z(0) = −Rx0

z′(t) ∈ −T (z(t)), a.e. t ≥ 0,

CR−1z(t) ∈ −DT (Dom(∂Ξ)) + Dom(Υ⋆), ∀t ≥ 0.

(39)

where the operator T is defined in (31). Let us set

X0 = {x0 ∈ IRn : −Cx0 ∈ −DT (Dom(∂Ξ)) + int{Dom(Υ⋆)}}.

For x0 ∈ X0, we denote by t 7→ z(t;x0) the unique solution of the system in (39).
Here the operator T +ωI is maximal monotone, a well-known estimation (see e.g.
Remark 2.1 in [32]) ensures that for x0, y0 ∈ Dom(T ), we have:

(∀t ≥ 0) : ||x(t;x0)− x(t; y0)|| ≤ eωt||x0 − y0||. (40)

When ω ≥ 0 then T is said hypomonotone, when ω < 0 it is said strongly monotone
[36].

Assumption 7.1. We assume that

0 ∈ X0, A(0) = 0, 0 ∈ (D + ∂Ξ)−1(0).

Remark 7.2. If
∂Ξ(0) 6= ∅

and
(∀v ∈ ker(D +DT ) ∩∆(D,Ξ), v 6= 0) : Ξ∞(v) > 0,

then 0 ∈ X0. Indeed, condition ∂Ξ(0) 6= ∅ entails that 0 ∈ −DT (Dom(∂Ξ)).
Moreover, we have

(∀v ∈ IRp, v 6= 0) : Υ∞(v) = Ξ∞(v) + Ψker(D+DT )∩∆(D,Ξ) > 0,

so that 0 ∈ int{Dom(Υ⋆).

Proposition 7.3. Let Assumptions 3.1, 4.1, 5.1, 5.4 and 7.1 hold. Let ω = 0,
then the trivial solution of (39) is stable in the sense of Lyapunov. If ω < 0 then

the trivial solution is globally asymptotically stable.

Proof. We have

0 ∈ (D + ∂Ξ)−1(0) ⇔ 0 ∈ ∂Ξ(0) ⇔ 0 ∈ ∂Φ⋆(0).

Asumption 7.1 ensures that

(∀t ≥ 0) : x(t; 0) = 0.

17



It results from (40), that

(∀t ≥ 0) : ||x(t;x0)|| ≤ eωt||x0||.

If ω = 0 then for each ǫ > 0, there exists δ > 0 such that

(x0 ∈ X0, ||x0|| ≤ δ) ⇒ (∀t ≥ 0) : ||x(t;x0)|| ≤ ǫ.

This relation ensures the stability of the trivial solution. If ω < 0 then the trivial
solution is stable and

(x0 ∈ X0) =⇒ lim
t→+∞

||x(t;x0)|| = 0.

This last relation ensures the global attractivity of the trivial solution.

Example 7.4. Consider the nonlinear relay systems of Section 6.2. Assump-
tion 7.1 is satisfied since 0 ∈ (D + ∂Ξ)−1(0) = {z ∈ IRp : 0 ∈ Dz + ∂Ξ(0) =
Dz + ∂Ψ[−1,1]p(0)}. Therefore the stability of the trivial solution depends on the
monotonicity constant of the operator T , i.e. of the nonlinear mapping A(·).

8. Conclusions

In this paper the well-posedness of multivalued Lur’e dynamical systems is studied.
It relies on the maximal monotonicity of an operator that is constructed from the
static multivalued part of the system. The conditions under which the maximal
monotonicity holds are examined in detail. The developments are illustrated by
nonlinear complementarity systems and nonlinear relay systems.
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